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We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of
these functions can produce truly random numbers. For the first time, we present solutions to
random maps. This allows us to check, analytically, some recent results about the complexity of
random dynamical systems. We confirm the result that a negative Lyapunov exponent does not
imply predictability in random systems. We test the effectiveness of forecasting methods in
distinguishing between chaotic and random time series. Using the explicit random functions, we can
give explicit analytical formulas for the output signal in some systems with stochastic resonance.
We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence
of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our
models we can predict specific patterns in the output signal of stochastic resonance systems.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1350455#
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Recently, many outstanding papers1–4 have stated the im-
portance of having true random models. The best existing
pseudorandom number generators can yield incorrect re-
sults due to the ‘‘unavoidable’’ correlations that appear
between the generated values.1–3 On the other hand,
there is a great interest in random dynamical systems.5–7

In recent years, there has been much discussion about th
transition to chaos and the way to characterize predict-
ability and complexity in these systems.6,7 There is also
strong controversy about the existing methods to distin-
guish chaotic and completely random systems.8–10 In the
present paper we investigate explicit functions that are
exact solutions to nonlinear chaotic maps. A generaliza-
tion of these functions can produce truly random se-
quences. Even if the initial conditions are known exactly,
the next values are in principle unpredictable from the
previous values. These functions cannot be expressed as
map of type Xn¿1Äg„Xn ,XnÀ1 ,...,XnÀr¿1…. Using some
of these functions we can exactly solve random maps a
the following:

Xn¿IÄf „Xn ,I n…, ~1!

where I n is a random variable. We can confirm the
result6,7 that a negative Lyapunov exponent does not im-
ply predictability in random systems. We show that the
forecasting methods8–10 are very effective in distinguish-
ing chaos from random time series. We investigate the

a!Electronic mail: jorge@pion.ivic.ve
11054-1500/2001/11(1)/1/15/$18.00
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influence of the level of chaos on the stochastic resonanc
„SR…. We can give explicit analytical formulas for the
output signal of some systems with stochastic resonance
We show the existence of a new type of solitonic sto
chastic resonance„SSR…, where the shape of the kink is
crucial.

I. INTRODUCTION

There is the common belief that, as truly random nu
bers should be unpredictable in advance, they must be
duced by random physical processes such as radioactive
cay, thermal noise in electronic devices, cosmic ray arri
time, etc.4

Knowing the past and present values should give no
formation as to future outcomes of a truly random variabl2

Thus, a recursive mathematical algorithm should not be a
to describe a truly random process. From this, it seems,
deterministic randomness is inherently unattainable.2

Here we have two problems as a motivation for o
work:

~1! How to describe theoretically these physical phenom
that are truly random.

~2! How to produce truly random numbers, which are ne
essary in different physical calculations such as Mo
Carlo method.

The purpose of our study is to find explicit functions th
produce truly random dynamics. These functions can be u
© 2001 American Institute of Physics
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as random number generators and as analytical solution
nonlinear random systems.

It is well known11,12 that the functionXn5sin2(up2n) is
the general solution to the logistic mapXn1154Xn(1
2Xn). Recently, other chaotic maps have been reporte
have exact solutions.13–19In the present paper we will inves
tigate in detail a generalization of the solution to the logis
map

Xn5sin2~upzn!, ~2!

wherez is a real number.
For z integer, function~2! is the general solution to th

family of maps

Xn115sin2~z arcsinAXn!. ~3!

Even for a realz we can calculate the Lyapunov exp
nent of map~3! exactly:l5 ln z.

For z.1, map~3! is chaotic. Nevertheless, for fraction
ary z the dynamics contained in function~2! is quite different
from that of map~3!. In fact, for a fractionaryz, the first-
return map generated by Eq.~2! is multivalued~see Figs. 1
and 2!. Let z be a rational number expressed asz5p/q,
where p and q are relative prime numbers. Then the firs
return map produced by function~2! is a curve such that, in
general, for a value ofXn we will haveq values ofXn11 . On
the other hand, for a value ofXn11 we will havep values of
Xn . Geometrically, these curves are Lissajous figures.17 But

FIG. 1. One-valued first-return map produced by function~2! with z55.

FIG. 2. Multivalued first-return maps produced by function~2!: ~a! z
53/2; ~b! z58/5.
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we should note that their meaning here is very different fr
that in their original definition. In this context, they represe
chaotic first-return maps. Forz irrational, the first-return map
is a random set of points as shown in Fig. 3.

The paper is organized as follows. In Sec. II we stu
the properties of the functionsXn5sin2(upzn). We present a
rigorous proof that, forz fractionary, the produced sequenc
are absolutely unpredictable in advance. Moreover, the
comes are completely independent. In Sec. III we discuss
use of these functions in actual numerical calculations. S
tion IV is dedicated to random maps of typeXn11

5 f (Xn ,I n), whereI n is a random variable. Function~2! can
help one to find analytical solutions to these maps. We c
culate exactly the complexity of a random map. This allo
us to check some recent results about the complexity
predictability of random maps. In Sec. V we address
problem of distinguishing chaos from random time seri
For this, we check the effectivity of the so-called ‘‘nonline
forecasting methods.’’ Section VI is devoted to stochas
resonance~SR!. First we give some introductory remark
about the historical developments in SR. Considering the
that we can calculate exactly the Lyapunov exponent o
class of chaotic maps, we are able to investigate the influe
of the level of chaos on SR. This is done first in the mo
common setup for SR: a bistable system. Then, we inve
gate the so-called nonlinear static systems with SR. For th
systems, we can present explicit analytical functions that
scribe the output of the system. Using the functions we
investigate the actual dynamics of the system. Finally, ba
on theoretical investigations, we show the existence of a n
type of solitonic stochastic resonance, where the shape o
kink is crucial.

II. EXPLICIT STOCHASTIC FUNCTIONS

After a rigorous analysis of function~2! we arrive at
interesting conclusions. For most fractionaryz.1 function
~2! is not only chaotic, but its next value is impossible
predict~from the previous values! unlessu is exactly known.
Whenz is an integer, the initial conditionX0 defines univo-
cally the value ofu ~any value ofu out of the interval 0
,u,1 definingX0 is equivalent to one in that interval!. If z
is fractionary, this is not so. There exists an infinite numb

FIG. 3. Random first-return maps forz5p: ~a! first-return map produced by
function ~2!; ~b! first-return map produced by function~2! and with trans-
formationYn5(2/p)arcsin(Xn

1/2).
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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.8481

.5151

.9990

.0036

.0146

.0578

.2181
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TABLE I. Representation of the matrixXn
k given by Eq.~5! with z52 andu0521/221. Note that if we start with the same initial conditions, then we w

have the same chaotic sequences.

u0 u011 u012 u013 u014 u015 u016 u017 u018 u019 u0110 u0111 u0112

X0 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0.9291 0
X1 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 0
X2 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0.7762 0
X3 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0
X4 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0
X5 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0
X6 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0
X7 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0
X8 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0
X9 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0
X10 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0.2181 0
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of values ofu that satisfy the initial conditions. The tim
series produced for different values ofu satisfying the initial
conditions is different in most cases. The fact that we kn
the initial conditions does not imply that we can determ
u. So the next value is unpredictable.

Let us consider the casez53/2 ~see Fig. 2!. If we wish
to calculateXn11 from the valueXn we will have two
choices:

Xn115 1
2@16~124Xn!~12Xn!1/2#. ~4!

The valueXn11 could be expressed as a well-defin
function of the previous values if (12Xn)1/2 could be a ra-
tional function of the previous values. However, each ti
we try to do this we meet the same difficulty because
previous values are also irrational functions of the past v
ues. This process can continue up to infinity.

A different way to see this phenomenon is the followin
Consider the family of functions

Xn
k5sin2@~u01k!pzn#, ~5!

whereu5u01k, k is integer.
For all k, the time seriesXn

k (k fixed, n as time! have the
same initial conditions. Ifz is an integer, the initial condition
defines the complete sequence~see Table I!. However, forz
fractionary all the time series are different. This is beca
the period of functionXn

k ~now n is fixed andk is variable! is
different for differentn ~for instance, whenz53/2, the pe-
riod of Xn

k is 2n). In general, forz5p/q, the period isqn.
That is,Xn11 cannot be determined byXn . Moreover,Xn11
Downloaded 08 Mar 2001 to 159.90.160.70. Redistribution subject to 
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cannot be determined by any number of previous values.
us see the following example withz53/2. SupposeXn50.
Now we have two possibilitiesXn1150 or Xn1151 ~see
Table II!. Assumeu050 andn50. For anyu5k (k integer!,
Xn50. Now,Xn115sin2@(3/2)kp#. So,Xn1150 for k even,
andXn1151 for k odd. But there is no way we can knowk
from the statementXn50 ~for all k integers this statement i
true!. This uncertainty about the next value is present for
points Xn exceptXn51/4 andXn51. But these two points
are a set of zero measure. That is, for almost all the point
the interval 0,Xn,1, the next value is unpredictable.

For z irrational there are infinite possibilities forXn11 .
All values are unpredictable. But let us continue with t
simple casez53/2. Suppose now thatu52m, wherem is an
integer. Note that in this caseX050. But, unless we knowu,
we never will know when the valueXm11 will be equal to 1
~see Table II!. We can have a string ofm11 zeros (m can be
as large as we wish! and only in the pointXm11 does the
sequence change from a string of zeros to the value 1. So
any finite numberm11 of previous valuesX0 , X1 , X2 , ...,
Xm ; the next value is not defined by the previous valu
Note that in this example we can have a string of zeros,
this is because the valueXn50 is a pseudofixed point of the
map (Xn ,Xn11) due to the intersection of the graph in Fi
2~a! with the line Xn115Xn . However, in general, the se
quence is very stochastic. On the other hand, the uncerta
about which is the next value remains for all the points in
interval 0<Xn<1 except forXn51/4 andXn51. The gen-
itions

64
086
5975
.0590
.1295
.2751
.4571
.8051
TABLE II. Representation of the matrixXn
k defined by Eq.~5! with z53/2 andu051. Note that all the column-sequences possess the same initial cond

X050. However, all the sequences are different in general.

u0 u011 u012 u013 u014 u015 u016 u017 u018 u019 u0110 u0111 u0112

X0 0 0 0 0 0 0 0 0 0 0 0 0 0
X1 1 0 1 0 1 0 1 0 1 0 1 0 1
X2 1/2 1 1/2 0 1/2 1 1/2 0 1/2 1 1/2 0 1/2
X3 0.8535 1/2 0.1464 1 0.1464 1/2 0.8535 0 0.8535 1/2 0.1464 1 0.14
X4 0.0380 0.1464 0.3086 1/2 0.6913 0.8535 0.9619 1 0.9619 0.8535 0.6913 1/2 0.3
X5 0.9157 0.3086 0.4024 0.8535 0.0096 0.9619 0.2222 1/2 0.7777 0.0380 0.9903 0.1464 0.
X6 0.8865 0.4024 0.2643 0.9619 0.0215 0.7777 0.5490 0.1464 0.9975 0.0842 0.6451 0.6913 0
X7 0.0711 0.2643 0.5245 0.7777 0.9519 0.9975 0.9016 0.6913 0.4266 0.1828 0.0292 0.0096 0
X8 0.8447 0.5245 0.1213 0.9975 0.1923 0.4266 0.9087 0.0096 0.7674 0.6214 0.0649 0.9784 0
X9 0.9686 0.1213 0.7410 0.4266 0.3964 0.7674 0.1020 0.9784 0.0009 0.9571 0.1421 0.7137 0
X10 0.7544 0.7410 0.0002 0.7674 0.7275 0.0009 0.7803 0.7137 0.0021 0.7928 0.6998 0.0037 0
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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.8431

.2333

.9780

.5633

.8194

.1987

.9914

.0151

.0267
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TABLE III. Representation of the matrixXn
k defined by Eq.~5! with z54/3 andu051/6. Note that the horizontal row-sequences possess periods 3n. All the

next-values in the column-sequences are unpredictable.

u0 u011 u012 u013 u014 u015 u016 u017 u018 u019 u0110 u0111 u0112

X0 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
X1 0.4131 0.9698 0.1169 0.4131 0.9698 0.1169 0.4131 0.9698 0.1169 0.4131 0.9698 0.1169 0
X2 0.6434 0.0531 0.2014 0.8431 0.9177 0.3019 0.0134 0.5290 0.9966 0.6434 0.0531 0.2014 0
X3 0.8951 0.4515 0.1712 0.9996 0.1430 0.4903 0.8702 0.0015 0.8139 0.5676 0.0932 0.9906 0
X4 0.9929 0.6920 0.2118 0.0006 0.2556 0.7387 0.9989 0.7933 0.3138 0.0081 0.1616 0.6309 0
X5 0.6475 0.0675 0.1584 0.7792 0.9668 0.4302 0.0018 0.3463 0.9291 0.8462 0.2261 0.0308 0
X6 0.0393 0.9703 0.2695 0.3683 0.9239 0.0086 0.7980 0.5534 0.1235 0.9998 0.1420 0.5262 0
X7 0.4955 0.5309 0.4425 0.5837 0.3901 0.6355 0.3390 0.6858 0.2897 0.7340 0.2427 0.7796 0
X8 0.7550 0.7849 0.8132 0.8400 0.8651 0.8884 0.9097 0.9290 0.9461 0.9609 0.9735 0.9837 0
X9 0.4054 0.9858 0.1903 0.2718 0.9995 0.3124 0.1565 0.9733 0.4495 0.0686 0.9093 0.5907 0
X10 0.0160 0.6018 0.9938 0.4460 0.0008 0.5054 0.9996 0.5430 0.0045 0.4089 0.9866 0.6383 0
e

ta

e

t

od
ow
s

he

ar
th
..,

s

l-

ext
en

e

d

-
e

ch
-
ing

dic
om-
a set

ese
of
eral uncertainty increases forp.q.2 ~see Table III!. In this
case, the unpredictability is true for all values ofXn .

On the other hand, ifz is irrational, then the points on th
first-return map (Xn ,Xn11) will fill the square 0<Xn<1;
0<Xn11<1 ~see Fig. 3 and Table IV!. For a large but finite
numbern, the map is an erratic set of points~we should
exclude the numbers of typez5m1/k, where m and k are
integers, because in this case the sequence is predic
given k previous values!.

Note that we can considerXn
k defined by Eq.~5! as an

infinite matrix, where the ‘‘columns’’ are the stochastic s
quences~dependence onn) and the horizontal ‘‘rows’’ are
periodic ~or quasiperiodic for irrationalz) sequences tha
represent the dependence onk. For z5p/q, the ‘‘rows’’ are
periodic sequences with periodqn ~see Tables II and III!.
We see that all the row sequences have different peri
So, all the column sequences are generally different. H
ever, for each integerm, there is an infinite set of column
having a string of values of lengthm that is identical in
each number of this set. That is, in the matrixXn

k , given an
initial string of lengthm52, we will find a string identical
to it with a period q2. Note ~in Table II! that the string
(0,1,1/2) can be found in infinite columns. However, t
next value is always uncertain. It can beX350.1464... or
X350.8536... . Just to know that the previous values
(0,1,1/2) does not give us the knowledge to determine
next value. The string~0,1,0.5,0.835...,0.0380...,0.9157.
0.8865...,0.0711...,0.8447...,0.9686...! can be found with pe-
Downloaded 08 Mar 2001 to 159.90.160.70. Redistribution subject to 
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riod 29. That is, the column number 2911 possesses thi
same string. However, the valueX10 is not alwaysX10

50.7544... . It can beX1050.2455... with the same probabi
ity.

In general, given an initial string of lengthm, we
will find a string identical to it with a periodqm. At the
same time, most of these strings possess different n
values~we have seen a striking example in the above-giv
text!. Suppose there is a univalent functionXn11

5g(Xn ,Xn21 ,...,Xn2r 11) that is equivalent to the sequenc
~2! for z fractionary. If we have more than one sequenceX0 ,
X1 , X2, ..., Xm21 with different next values, then we shoul
decide that the map we are looking for cannot be of orderm.
If for any m, m51,2,3,...,̀ ; we have more than one se
quenceX0 , X1 , X2 , ..., Xm21 , such that the next values ar
different, then such a map does not exist.

In the above-given text we have shown that for ea
string of valuesX0 , X1 , X2, ..., Xm21 , there is another se
quence with these same values but with different proceed
values.

For z irrational, all the row sequences are quasiperio
and different. The column sequences correspond to c
pletely random sequences. These functions can produce
of completely independent values.

III. RANDOM NUMBER GENERATORS

Now we should say some words about the use of th
functions in actual numerical calculations. The argument
n

.9976

.0906

.2677

.5356

.5278

.0030

.9186

.9997

.9891

.9357
TABLE IV. Representation of the matrixXn
k given by Eq.~5! with z5p and u051/4. Note that it is difficult even to find ‘‘clusters’’ of equal values i

different column sequences. All column sequences are completely random and different.

u0 u011 u012 u013 u014 u015 u016 u017 u018 u019 u0110 u0111 u0112

X0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
X1 0.3897 0.0516 0.0457 0.3761 0.7983 0.9995 0.8307 0.4169 0.0646 0.0348 0.3494 0.7756 0
X2 0.9895 0.7599 0.3653 0.0562 0.0286 0.3002 0.6984 0.9708 0.9444 0.6359 0.2412 0.0107 0
X3 0.4950 0.4753 0.4556 0.4360 0.4165 0.3972 0.3780 0.3589 0.3401 0.3216 0.3033 0.2853 0
X4 0.7996 0.4643 0.2603 0.9388 0.0012 0.9002 0.3252 0.3937 0.8535 0.0114 0.9684 0.2003 0
X5 0.9997 0.9940 0.9807 0.9601 0.9324 0.8982 0.8579 0.8120 0.7615 0.7069 0.6492 0.5892 0
X6 0.7869 0.5423 0.1479 0.9978 0.0881 0.6342 0.7058 0.0498 0.9849 0.2060 0.4662 0.8458 0
X7 0.0521 0.8342 0.7685 0.0216 0.4881 0.9847 0.2517 0.1484 0.9368 0.6171 0.0003 0.6509 0
X8 0.1640 0.7578 0.3299 0.5757 0.5214 0.3822 0.7096 0.2064 0.8663 0.0746 0.9681 0.0066 0
X9 0.5777 0.8516 0.9930 0.9485 0.7348 0.4326 0.1558 0.0087 0.0469 0.2559 0.5569 0.8365 0
X10 0.0013 0.0343 0.1084 0.2171 0.3507 0.4976 0.6446 0.7789 0.8885 0.9639 0.9982 0.9885 0
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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function ~2! increases exponentially. So, there can be so
problems in generating very large sequences. A practica
lution is to change parametersu after a fixed numbern5N
of sequence valuesXn . SupposeN is a number for which
there are not calculation problems. For producing the new
of values ofXn ~with a newu! we start again withn50. This
procedure can be repeated the desired number of times~re-
member that even if the sequence is finite, it will be unp
dictable; and a sequence formed as a set of unpredict
sequences will be also unpredictable!. It can be shown tha
there exists always au such that, with it, the original function
will produce the same sequence as that generated with
procedure of changingu.

For the calculation of truly random numbers with fun
tion ~2! the best way is to use an irrationalz. This irrational
z does not have to be a large number. For instance, we
use z5p. The geometrical place of the return map forz
irrational is the whole square 0<Xn<1; 0<Xn11<1. So,
we do not have to worry about the method for determin
the next value ofu. For example, we can use the followin
method in order to change parameteru after each set ofN
sequence values.

Let us defineus5AWs , wheres is the order number o
u in such a way thats51 corresponds to theu used for the
first set ofN valuesXn ; s52 for the second set, etc.;Ws is
a ‘‘stochastic’’ sequence. For instance, the valuesWs can be
obtained from the same sequenceXn . The inequalityA.1
should hold in order to keep the absolute unpredictability

Another important question about good random nu
bers is to have a generator able to produce uniformly
tributed points. By means of the transformationYn

5(2/p)arcsin(Xn
1/2), we can obtain random numbers un

formly distributed on the interval (0,1).19 Once we have uni-
formly distributed random numbers, we can use well-kno
transformations to generate random numbers with any g
distribution.19

We have performed several standard statistical tests
the functionsXn5sin2(upzn) @after the transformationYn

5(2/p)arcsin(Xn
1/2)]. Among them are the following: the

central limit theorem test, the moments calculations, the v
ance calculation, and thex2 test. The sequenceYn has
passed all these tests satisfactorily. For instance, the the
ical values for the moments and variances are the follow
^Xn&51/(n11), sn5n2/@(2n11)(n11)2#, and these val-
ues are obtained when we use the sequenceYn .

The autocorrelation functionCm5^YiYi 1m&2^Yi&
2

~where ^ & is the average overalli with i 51,2,3,...) can be
shown to be zero even form51. For the known chaotic
maps~which sometimes are used as pseudorandom num
generators! uCmu decays withm, but there is a range of thi
dependence that is related to the correlation or memory ti

Recently21 a new method has been developed, which
lows us to compare the randomness of different sequen
In these works, a measure of randomness~we will call it R)
is introduced.

Suppose we have a sequence of valu
U1 ,U2 ,U3 ,...,Un . Form a sequence of vectors

X( i )5@Ui ,Ui 11 ,...,Ui 1m21#. ~6!
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Now, we will define some variables:

Ci
m~r !5

number ofj such thatd@X( i ) ,X( j )#<r

N2m11
, ~7!

where d@X( i ) ,X( j )# is the distance between two vector
which is defined as follows:

d@X( i ) ,X( j )#5max~ uUi 1k212U j 1k21u! ~8!

with k51,2,...,m.
Now we can define the measure of randomness:

R~m,r ,N!5f (r )
m 2f (r )

m11, ~9!

where

f (r )
m 5

1

N2m11 (
i 51

N2m11

ln Ci
m~r !. ~10!

This measure depends on the resolution parameterr and
an ‘‘embedding’’ parameterm. This technique has bee
proved to be very effective in determining syste
randomness.21

For givenr andm we have a maximum possible random
ness. A sequence with maximum randomness is unco
lated. The randomness of our sequencesYn with z irrational
is the maximum possible for the givenr andm. For instance,
if r 50.025, the maximum possible randomness isR
5 ln 40. The randomness of function~2! with z5p ap-
proaches the valueR53.688 for increasingN. For compari-
son, the randomness of the logistic map at the point of
chaos isR50.693. Even if we further decreaser and in-
creasem andN, for the logistic map and other usually cha
otic maps,R saturates and remains constant.

On the other hand, forr→0, the randomness of functio
~2! with z5p tends to the maximum possible value, i.e.,R
→ ln(1/r ). For r→0, it never saturates.

We should say that the pseudorandom number gen
tors described in Ref. 1 can pass some of the statistical t
devised to check pseudorandomness.4 However, hidden er-
rors in these generators have been found.1 Several research
ers have traced the errors to the dependence in the pse
random numbers. Indeed, they are all based on recur
algorithms.

Recently simulations of different physical systems ha
become the ‘‘new tests’’ for pseudorandom number gene
tors. Among these systems are the following: the tw
dimensional Ising model, ballistic deposition, and rando
walks. Nogue´s et al.3 have found that using common pse
dorandom number generators, the produced random w
present symmetries, meaning that the generated number
not independent. On the other hand, the logarithmic plot
the mean distance versus the number of stepsN is not a
straight line afterN.105 ~in fact, it is a rapidly decaying
function!.

D’Souzaet al.2 use ballistic deposition to test the ran
domness of pseudorandom number generators. They fo
correlations in the pseudorandom numbers and strong
pling between the model and the generator~even generators
that pass extensive statistical tests!.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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In a ballistic deposition model of growth, free particle
initiated at random positions above a one-dimensional s
strate, descend ballistically and stick upon first touching
surface of the growing cluster. The substrate of lengthL
consists of discrete columns indexed by integer valuesx
with 1<x<L. The growth interface is defined by the max
mum occupied site along each columnh(x,L), where
h(x,L) also takes on discrete values.

The width of the growth interfacejL(t) on average in-
creases following a power law behavior until reaching
steady asymptotic value, the magnitude of which depend
the underlying substrate sizeL. For jL(t) we have

jL
2~ t !5

1

L (
x51

L

@h~x,t !2^h~ t !&#2, ~11!

where^h(t)& is the mean height of the surface at timet.
One consequence of the Kardar–Parisi–Zhang theor

that the steady state behavior for the interface fluctuation
one dimension should resemble a random walk, i.e.,jL(t
→`);L1/2. Thus, a random walk again serves as a good
for random numbers. These two papers2,3 have been cited by
Fisher3 in his article about the great problems of statistic
physics for this century.

With our numbersYn , the produced random walks po
sess the correct properties, including the mean distance
havior ^d2&;N ~see Fig. 4!.

IV. RANDOM MAPS

The functions of~2! are important not only for numerica
simulations. They are relevant by themselves as theore
paradigms of stochastic processes.4 Considering the fact tha
these are explicit functions, we can use them to solve~ana-
lytically! many theoretical problems in stochastic dynami
systems.

Consider the following random map:6

Xn115 1
2@11I n~124Xn!~12Xn!1/2#, ~12!

FIG. 4. Mean distance vs number of steps for a random walk gener
with the random numbersYn5(2/p)arcsin(Xn

1/2), where Xn is given by
function ~2!.
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whereI n is a random variable that takes the values61 with
equal probability.

An exact solution to this random map can be written
follows:

Xn5sin2@up~3/2!n#. ~13!

Now we can check some of the results discussed by
authors of Refs. 6 and 7. They have introduced a measur
complexityK in terms of the average number of bits per tim
unit necessary to specify the sequence generated by the
tem. In dynamical systems of type~1! @Eq. ~12! is an ex-
ample# this measure coincides with the rateK of divergence
of nearby trajectories evolving under two different realiz
tions of the random variableI n .

The complexity of the dynamics can be measured as

K5lu~l!1h, ~14!

wherel is the Lyapunov exponent of the map,h is the com-
plexity of I n , andu~l! is the Heaviside step function. Com
plexity h should be defined also as the average numbe
bits per time unit necessary to specify the random varia
I n . When I n is a usual chaotic noise, thenh coincides with
the Kolmogorov–Sinai entropy.

In the case of the random map~12! l5ln~3/2! and h
5 ln 2. Hence,K5 ln 3. On the other hand, any calculatio
~theoretical or numerical! of K for the dynamics generated b
function ~13! yields the correct valueK5 ln 3. Moreover,
even an independent calculation of the complexity of t
dynamics using different methods20,21 produces the same re
sult.

Using the function~2! we can also solve the map

Xn115
11I nA12Xn

2
, ~15!

whereI n is defined as in Eq.~12!.
Here the Lyapunov exponent is negative:l5ln~1/2!,0.

However, the complexity is positive:K5 ln 2.
In the presence of random perturbations,K can be very

different from the standard Lyapunov exponent and, hen
from the Kolmogorov entropy computed with the same re
ization of the randomness.

We stress that a negative value ofl does not imply
predictability.

In general, if we apply the measure of complexityK to
our function ~2!, then we obtain the following results: Fo
z5p/q (p andq relative primes!, K5 ln p. If z is irrational,
the complexity is infinite!

We should say that using function~2! we can create
complete sets of orthogonal elements. In the same way
we can solve, to begin with, any map of typeXn11

5 f (Xn), we can also solve theoretically many importa
problems in stochastic dynamical systems.

V. NONLINEAR FORECASTING METHODS

Now we address the problem of deciding which of t
proposed methods8–10 for distinguishing chaos from random
time series are more effective. Recently a new method ba
on nonlinear forecasting was proposed.8–10 The idea of the

ed
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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7Chaos, Vol. 11, No. 1, 2001 Exact solutions to chaotic and stochastic systems
method is as follows. One can make short-term predicti
that are based on a library of past patterns in a time se
~the method of nonlinear forecasting is described in Re
8–10 and the references quoted therein!. By comparing the
predicted and actual values, one can make distinctions
tween random sequences and deterministic chaos.

For chaotic~but correlated! time series, the accuracy o
the nonlinear forecast falls off with increasing predictio
time interval. On the other hand, for truly random sequenc
the forecasting accuracy is independent of the prediction
terval. The decrease with time of the correlation coeffici
between predicted and actual values can be used to calc
the largest positive Lyapunov exponent of the time serie9

Function~2! is a very good model system to check th
and other methods. In fact, forz integer, these are chaoti
sequences of typeXn115 f (Xn). For z5m1/k, we have cha-
otic maps of typeXn115g(Xn ,Xn21 ,...,Xn2k11). For z
fractionary, we have different types of random sequen
with different complexities. Finally, forz irrational~generic!,
the sequence is maximally random.

Suppose we have a sequenceU1 ,U2 ,...,UN . Now we
construct a map with the dependenceUn

predicted as a ‘‘func-
tion’’ of Un

observed.
If we have a correlated chaotic sequence, this dep

dence is a straight line, i.e.,Un
predicted' Un

observed~when the
forecasting method is applied for one time step into the
ture!. When we increase the number of time steps into
future, this relation deteriorates. When we apply this meth
to function ~2! with z5p @after transformation Yn

5(2/p)arcsinAXn], even the mapUn
observedvs Un

observedfor
one time step into the future is a map equivalent to t
shown in Fig. 5. On the other hand, the correlation coe
cient is independent of the prediction time. In fact, there
no correlations. The details will be given elsewhere. Nev
theless, we should say that this method is quite efficien
distinguishing chaos from randomness. However, it can
distinguish between different random time series.

Other methods discussed in Ref. 8, are less effectiv
this task. They are more qualitative, requiring subject

FIG. 5. Predicted values one step into the future vs observed values fo
time series generated by function~2! with z5e, after the transformation
Yn5(2/p)arcsin(Xn

1/2).
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sions.

VI. STOCHASTIC RESONANCE

A. Lyapunov exponents

A phenomenon that has awakened very much interes
last several years is stochastic resonance~SR!.22–40The clas-
sical model for this phenomenon is the following:

ẋ2x1x35A0 sin~vt !1h~ t !. ~16!

The sum of a noise signal,h(t), and a weak periodic
signal is used to drive a bistable system. The most impor
characteristic of SR is that the signal-to-noise ratio~SNR!
has a maximum in the plot SNR vsD, whereD is the noise
intensity, for a finite nonzero value of the noise intensity.

It has been shown that SR still occurs when chaos, ra
than noise, is used as the nonperiodic component of the d
ing signal.27 Several authors have investigated the SR in c
otic systems.27–32

A very important question is how SR depends on t
largest Lyapunov exponent of the driving chaotic noise25

We address this problem systematically for the first tim
since we can solve exactly the problem of calculating
Lyapunov exponent. We should say that for large values
the Lyapunov exponent, the SR is not a very sensitive p
nomenon on the level of chaos~this is unlike the phenomen
discussed in Refs. 1–3!. The curve SNR vsD practically has
no variation for l@ ln 3. However, in the interval ln(3/2)
,l, ln 2, the SR strongly depends on the Lyapunov exp
nent. In this interval, the maximum of SNR is shifted to t
right ~larger noise intensities! and is amplified! Figure 6
shows the dependence SNR(D) for different values of the
Lyapunov exponentl. These data are the result of numeric
simulations of Eq.~16!. We can compare this result with tha
obtained in Ref. 33. In this work, the phenomenon of s
chastic resonance is studied in the presence of colored n
In overdamped systems, the authors find that SR is s
pressed with increasing noise color. In contrast, for colo
noise induced by inertia~as well as for asymmetric dichoto
mic noise!, they obtain an enhancement of SR.

he

FIG. 6. In the interval ln~3/2!,l,ln 2, the maximum SNR is shifted to the
right and is amplified.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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8 Chaos, Vol. 11, No. 1, 2001 González, Reyes, and Guerrero
The same result can be obtained in the so-called thr
old systems.34–36 For instance, define

I n5g~pn1hn!, ~17!

wherepn is a periodic function,hn is some kind of noise,
and g(x) is a function with some properties that allow th
existence of SR.34–36

The simplest case is the following:

g~x!5H 2V,x,xth

V,x.xth .
~18!

A nonlinear circuit with this kind of threshold nonlinea
ity is discussed in Ref. 36.

Different measures have been used to characterize
chastic resonance. In particular, in Ref. 41 the dynamics
noisy bistable systems is analyzed by means of Lyapu
exponents and measures of complexity.

It can be shown that, in stochastic resonance syste
the functionK(D) ~where K is the complexity as defined
previously andD is the noise intensity! has a local minimum
for a nonzero value ofD. This minimum represents an opt
mal value of noise intensity at which SR occurs. This res
confirms the findings of Ref. 41.

We can considerK as a ‘‘dynamical measure’’ of SR
becauseK coincides with the rate of divergence of near
trajectories evolving under two different noise realization

This measure can be used to characterize more gen
stochastic dynamical systems such as the following:

Xn115F~Xn ,pn ,hn!, ~19!

wherepn is a periodic function andhn is the noise.
Let us investigate a particular example:

Xn115cos$@11e~pn1Dhn!2#arccos~Xn!%. ~20!

Herepn is a periodic function of amplitudea andhn is
a chaotic noise defined as follows:

hn5Yn2d21, ~21!

where d is a parameter for which 0,d,1 and Yn11

5sin2(zarcsinAYn).
For this dynamical system, functionK(D) has a mini-

mum for a finiteD.
Let us suppose thatpn is a period-one function. We ca

write down an analytic expression forK:

K5 lnH zF11
e

2
~~a2Dd!21~a2D~z21!!2!G J . ~22!

The functionK(D) is shown in Fig. 7. For a fixedz, the
minimum of K is obtained approximately forD5a/(z
21). If we minimize K with respect to bothD and z, we
obtainD5a/d, z511d.

Note that for 11d,z,3, the minimum is deeper and i
shifted to the right asz is decreased. This is a phenomen
similar to that obtained using SNR in Fig. 6. See also S
VI E, where some experiments are mentioned.

We should say thatK can characterize the dynamics
dynamical systems of type~19! even when there is no per
odic function at all.
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In some cases, for a finite value ofD we can find the
least complex dynamics.

In some sense, this is a more general phenomenon
the usual stochastic resonance. In fact, this is an examp
the so-called noise-induced disorder–order transitions,
which the SR phenomena can be a subset.

In Fig. 8, different time series and return maps produc
by the dynamical system~20! are shown. Note that for som
intermediate value ofD we obtain the least complex dynam
ics.

In Fig. 9 we see that when bothD andz are very close to
the optimal values, then the resulting dynamics is very p
dictable.

Note that this system can be chaotic even whenD50,
due to the intrinsic nonlinear dynamics of the system. Ho
ever, for some finite value of the noise intensityD.0, we
can control this chaotic dynamics. So, in this case, we
truly controlling the chaotic system using chaotic noise.

B. Explicit output functions for SR systems

Recently scientists have learned that stochastic re
nance can appear not only in bistable systems.36–38 A very
interesting class of systems is that of the so-called nonlin
static~or ‘‘nondynamical’’! systems. In Refs. 36–38 a theo
of these systems is presented. Using this theory and our f
tion ~2! we can write down an explicit ‘‘solution’’ function
to these systems. For instance, the function

I n5tanh$B@A0 sin~vn!1D cos~upzn!2Vth#% ~23!

can behave as a SR system. Figure 10 shows that the f
tion ~23! is a SR system forB524. ForB51 the stochastic
resonance disappears. Here the SNR was calculated num
cally using function~23! as the output signal. In fact, we ca
construct a very general class of SR functions of typeI n

5g(Vn)1jn , whereVn5pn1hn is the input andI n is the
output. Functionjn represents the intrinsic noise.38

Note that although the systems described in Refs. 36
are called ‘‘static systems,’’ once we have constructed
explicit functions, e.g., Eq.~23!, we can obtain exact solu

FIG. 7. FunctionK(D) as given by Eq.~22!. Solid line,z51.5; dotted line,
z52; dashed line,z52.5; dot-dashed line,z53. Note that asz is decreased,
the minimum of functionK(D) is deeper and is shifted to the right.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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FIG. 8. Time-series and first-return
maps generated by the noise-drive
dynamical system~20!. ~a! and ~d! D
50.5; ~b! and ~e! D52; ~c! and ~f!
D520. In all cases«50.5, a51,
d50.3, z51.5.
ry
n

ti-
e
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in
ic

i-

tions to very dynamical systems. Also note that it is ve
easy to check that there is a maximum in the depende
SNR vs D; however our explicit functions can be inves
gated using mathematical analysis, not only statistics. V
different functions with very different dynamics can have t
same SNR behavior and other statistical properties. Us
our explicit functions we can investigate the true dynam
of the system.
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The analysis of function~2! allows us to construct a
continuous and differentiable function with properties sim
lar to those of the chaotic functions~2!. Let us give an ex-
ample:

f ~ t !5sin$B1 sinh@a1 cos~v1t !1a2 cos~v2t !#

1B2 cosh@a3 cos~v3t !1a4 cos~v4t !#%. ~24!
e

-

s

FIG. 9. Time series generated by th
noise-driven dynamical system~20!.
~a! D52, ~b! D510. In all cases
«50.5,a51, d50.1,z51.1. Note that
in case~b! the control is so good that
the output signal is almost periodic
and is confined to a very narrow inter
val of values. Note also that in this
case the noise intensity is 5 time
larger!
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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10 Chaos, Vol. 11, No. 1, 2001 González, Reyes, and Guerrero
Using functions of this kind we can find analytic sol
tions to continuous chaotic dynamical systems. Function~24!
with the parameter valuesB1520, B2530, a1510, a2

515, a3510, a4515, v151, v25p, v35A2, v45e, be-
haves as a chaotic system~see Fig. 11!. Any investigation
~theoretical or numerical! will give the same result: The
maximum Lyapunov exponent is positive. Moreover, if w
need a continuous dynamics with a chaotic Gaussian-
‘‘noise’’ we can use a transformation of Eq.~24!: g(t)
5 ln@f2(t)/(12f2(t))#. We have been able to produce SR w
function ~24!, f (t), andg(t). In Fig. 12 SNR is calculated
from numerical simulations of Eq.~16! and using the con-
tinuous chaotic functiong(t)5 ln@f2(t)/(12f2(t))#, wheref (t)
is defined by Eq.~24!.

C. Solitonic stochastic resonance

The spatiotemporal SR in thew4 model has been consid
ered in a very interesting paper.39 Recently we introduced the
concept of solitonic stochastic resonance~SSR!40 where a
soliton moves in a bistable potential created by spa
dependent external forces driven by a periodic signal
noise. This seems to be equivalent to the conventional s
for SR, however the conditions for the existence of SSR
different from that of SR with a point particle in a bistab

FIG. 10. The explicit function~23! can behave as a stochastic resonan
system. SNR vs noise intensity (D) is shown forB524 andB51. Note that
for B51 there is no maximum in this plot.

FIG. 11. Chaotic time series generated by the continuous function~24!.
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potential. The situation for SSR can produce very interest
phenomena like the transformation of the soliton into a thr
‘‘particle’’ system of two solitons and an antisoliton.40

Here we will present another framework for SSR.
The function

f~x,t !5tanh$B@x2x02A sin~vt !2D f ~ t !#%, ~25!

wheref (t) is defined in Eq.~24!, can be used to find analyti
solutions to nonlinear partial differential equations.

Recall that function~25! is a SR solution@see Eq.~23!#.
For instance, if we take the time series produced byf(x
50,t) @with B512,A50.67,v50.88,x052, andf (t) is the
function ~24!# we obtain a new kind of SSR from~25!. In
fact, using the solution~25! we can prove that the over
damped perturbedw4 equation

f t2fxx2B2~f2f3!5
B@vA cos~vt !1D ḟ ~ t !#

cosh2@B~x2x0!#
1F~x!,

~26!

whereF(x)5a tanh@B(x2x0)#, possesses a different kind o
SSR.

We can calculate analytically the SNR for the dynam
of Eq. ~26!.

Suppose that, in Eq.~26!, instead off (t), the noise is
described by the functionh(t)5(2/p)arcsinf(t), and f (t) is
given by function~24!. This is equivalent to a uniformly
distributed noise in the interval~0,1!. We will define b/2
5x02A.

Following the ideas of Ref. 34, we can calculate an a
proximate analytical expression for the SNR whenB@1:

SNR55
0 for

D

2
,

b

2
2A

1

D S D

2
2

1

2
12AD for

b

2
2A<

D

2
<

b

2
1A

2A

D
for

D

2
.

b

2
1A .

It is evident that there is a maximum in the curv
SNR(D).

FIG. 12. SNR vs noise intensity (D) for the dynamics of system~16!. Here
the ‘‘noise’’ h(t) is defined ash(t)5 ln@f(t)/(12f(t))#, where f (t) is given
by Eq. ~24!.
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11Chaos, Vol. 11, No. 1, 2001 Exact solutions to chaotic and stochastic systems
Our theoretical results on the theory of solitons p
turbed by external forces42–45allow us to understand the dy
namics of Eq.~26! and to interpret the physics of solutio
~25!. In order to obtain the desired dynamics we should so
Eq. ~26! with an initial condition representing a soliton situ
ated in a vicinity of pointx5x0. In this case, the soliton
center of mass will be oscillating inside the potential w
created by the forceF(x). This is exactly what represent
solution ~25!.

When we investigate the time series obtained after
numerical simulation of Eq.~26!, we obtain SSR as predicte
by the theoretical solution~25!.

The SNR vsD plot depends on the value ofB. For very
large values ofB, the SNR vsD plot has a very nice maxi
mum ~see Fig. 13!. The SNR(D) dependence shown in Fig
13 was calculated numerically from the time series genera
by the functionf(x50,t) as a solution of Eq.~26!. The
same result is obtained if we investigate the analytic solu
~25!. For very small values ofB, the SSR disappears. Thu
this is a SSR that depends on the shape of the soliton
particular, it depends on the width of the soliton, which c
be expressed asS51/B. This SSR is different from the on
obtained for a soliton moving in a bistable potential wel40

and that described in Ref. 39.
In Ref. 39 the synchronization of a linearly couple

chain ofN overdamped bistable elements, subject to a de
ministic periodic signal and uncorrelated white noise, is
dressed in the continuous limit of aw4 theory. The coopera
tion between noise and coupling is shown to lead
spatiotemporal stochastic resonance. There, the bistabilit
the w4 equation on the potentialU(w);(w221)2 plays the
most important role. On the other hand, in our previo
paper40 we considered the stochastic resonance of a sol
moving in a bistable potential created by inhomogene
external forcesF(x). In this paper, the output signal is th
coordinate of the soliton center of mass. In the present w
the relevant output signal isf(x50,t). The soliton is mov-
ing in a monostable well potential created by inhomogene
external forces. However, the most striking feature is that
width of the soliton determines the existence or not of

FIG. 13. SNR vs noise intensity (D) for the dynamics of system~26!.
The SNR is calculated from the time series generated by the func
f(x50,t).
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solitonic stochastic resonance. The shape of the output si
possesses patterns that are very different from that obta
in a bistable system. They are more similar to the patte
that appear in threshold systems.

D. Patterns in the output signal of SR systems

Once we have an explicit solution that describes the s
chastic resonance system as the following:

I ~ t !5g~P~ t !1h~ t !! ~27!

and

I ~ t !5g~P~ t !1h~ t !!1j~ t !, ~28!

whereP(t) is a periodic function,h(t) andj(t) are different
manifestations of noise dynamics, we can calculate the S
exactly. We should note that SNR is the main measure
stochastic resonance and is widely used in SR literature

For instance, let us define the different noises as follo
j(t) is a white noise with zero mean and correlation fun
tion:

^j~ t !j~ t1t!&5Qd~t!, ~29!

whereQ is a constant parameter.h(t) is a Gaussian noise
with zero mean and correlation function:

^h~ t !h~ t1t!&5s2 exp~2t/tF!. ~30!

Following Ref. 38 we can consider the case

g~V!5V3, ~31!

where

V5a sin~w0t !1h~ t !. ~32!

In this case the SNR is

SNR5p
18a2s419a4s21~9/8!a6

2Q1tF~44s6154a2s41~27/2!a4s2!
. ~33!

This is exactly the SNR obtained in Ref. 38.
The static character of the present nonlinearities allow

direct statistical analysis, in which all quantities relevant
characterize the SNR in the output signal can be obtai
from statistics computed directly on the input noises. In f
the SNR is a statistical measure based on the statistical p
erties of noisesh(t) andj(t).

Nevertheless, we believe that using our explicit fun
tions we can obtain much more information about the out
signal. Some of this information can have statistical char
ter, but we will have also dynamical and geometrical info
mation about the output signal.

For instance, we can predict the values of the lo
maxima and minima in the time series, and the distance
tween them. We can obtain the exact analytical shape of
extrema.

In any stochastic resonance output signal there are
terns. These patterns can be different for different syste
The following function

I n5
tanh@B~A sin~wn!1D cos~upzn!!2Vth#11

2
~34!

n

AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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FIG. 14. Time series produced b
explicit functions that describe differ-
ent stochastic resonance systems.~a!
Function ~34!, ~b! system ~35!, ~c!
function ~36!, ~d! function ~39!.
ar

ese
note
pi-
sys-
rns
ur

in

te
iod

put
is the analytical solution for a circuit withI –V characteristic
of type

g~V!5H 0 for Vth

1 for V.Vth

~see Ref. 36!. A typical time series is shown in Fig. 14~a!.
In Fig. 14~b! is shown the typical time series for

g~V!5H 21 for V,20.5

0 for 20.5<V<0.5

1 for V.0.5.

~35!

In Fig. 14~c! we show the function

I n5S tanh~BVn!11

2 DbVn , ~36!

where

Vn5A sin~wn!1D cos~upzn!, ~37!

which is the output signal for a circuit system with the ch
acteristic

g~V!5H 0 for V,Vth

b~V2Vth! for V.Vth .
~38!
Downloaded 08 Mar 2001 to 159.90.160.70. Redistribution subject to 
-

Figure 14~d! shows the output signal

I n5g~Vn!1jn , ~39!

where g(V)5V3, Vn5a sin(wn)1hn , hn5DYn , Yn

5 ln(Xn/12Xn), Xn5sin2(upzn), jn5Q ln Zn /(12Zn), and
Zn5sin2(uppn).

All these systems present stochastic resonance. All th
systems can be tuned to have the same SNR. However,
that all the patterns are different. Compare them to the ty
cal time series of a classic bistable stochastic resonance
tem shown in Fig. 15. The information about these patte
is in the explicit functions that can be written down using o
stochastic functions.

We can even make predictions about the outcomes
these stochastic systems. For instance, in the function~34!
we can say that with a probabilityp50.8, after the function
I n has taken the valueI n51, it will take the valueI n50.
Meanwhile, we can expect that it will remain in the sta
I n50 for an average time aproximately equal to the per
of the periodic input signal.

On the other hand, the output function~36! will give us
much more information about the actual shape of the in
periodic signal than the functions~34! and ~35!.
tic
FIG. 15. Typical time series for a bistable stochas
resonance system such as that described by Eq.~16!.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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FIG. 16. First-return map produced b
function ~39!, which describes a sto-
chastic resonance system with intrins
noise.~a! Situation of stochastic reso
nanceD50.16. ~b! Situation out of
stochastic resonanceD50.3.
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Systems with intrinsic and external noises are expec
to be very random. Nevertheless, using the theoretical in
mation obtained from our explicit function~39!, we can
make very remarkable predictions. For instance, if the ou
signal takes a ‘‘large’’ negative value~say I n5220), then
with absolute certainty we can predict that the next val
will be negative anduI nu→0. WhenI n reaches the valueI n

50, we can predict that the next value will be positive, b
the exact value is unpredictable. When it takes this posi
value, the next value will be negative with absolute certain
The larger the absolute value ofI n when it takes a positive
value, the larger the absolute value of the next negative v
that it will take. Note that all the randomness of this dyna
ics is produced whenI n is near zero. WhenI n is far from
zero, we can make exact predictions of the next values.
this can be corroborated when we observe the first-re
map of this dynamics~Fig. 16!.

We can see the stochastic resonance as a phenom
that transforms a complex dynamics into a simpler one. T
is, the output signal is less complex than the input signal.
there are also phenomena that lead to a more complex
havior ~e.g., the chaotic systems!.

Using our functions we can predict the existence of n
complex phenomena.

After an analysis of the functionsXn5sin2(upzn), which
we have shown to produce complex dynamics, the first ch
acterics that surface are the following: The function can
rewritten in the formXn5h( f (n)), where the argumen
function f (n) grows exponentially and the functionh(y) is
always finite and periodic.

However, a more thorough analysis shows that~to pro-
duce complex behavior! the functionf (n) does not have to
be exponential all the time, and the functionh(y) does not
have to be periodic.

In fact, it is sufficient that the functionf (n) be a nonpe-
riodic oscillating function where there are repeating interv
with finite exponential behavior. For instance, this can b
chaotic function. On the other hand, functionh(y) should be
noninvertible. In other words, it should have differe
maxima and minima. The inverse ‘‘function’’ ofh(y) should
be multivalued.

The complexity of the output dynamics is proportional
the number of extrema of functionh(y).
Downloaded 08 Mar 2001 to 159.90.160.70. Redistribution subject to 
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For example, the following system can produce a d
namics similar to that obtained with our functionXn

5sin2(upzn):

Xn115H aXn if Xn,Q

bYn if Xn.Q,
~40!

Yn115sin2~d arcsinAYn!, ~41!

Zn115g~Xn!, ~42!

whereg(Xn) is a function with several maxima and minim
The first return map is shown in Fig. 17. In fact, this is
completely new chaotic phenomenon because the dyna
is completely unpredictable. So, when the input is a sim
chaotic signal and the system is an electronic circuit with
I –V characteristic shown in Fig. 18, then we will have
very complex output. This phenomenon is the opposite to
stochastic resonance. Compare twoI –V characteristic
curves for a phenomenon that simplifies the dynamics
for a new phenomenon that makes the dynamics extrem
complex in Fig. 18. In Ref. 46 a theory of nonlinear circu
is presented. There we can find different methods to c
struct circuits with theseI –V characteristic curves.

All the results presented in Sec. VI D, which are r
lated to Figs. 14–18 were obtained through theoreti
calculations.

FIG. 17. First-return map produced by the dynamics of variableZn in the
dynamical system~40!–~42!. ~a! Functiong(x) possesses 1 local extremum
~b! Functiong(x) possesses 100 local extrema.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html
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E. Applications in real systems

In this section we will present some examples that sh
how our technique can be used in real world application

Our group has designed and constructed a nonlinear
cuit ~using a concave resistor! with the I –V characteristic
described by Eq.~36! ~see Ref. 46!. We wished to check ou
theoretical results about the dependence of SNR on
Lyapunov exponent of the chaotic noise. We also desire
observe the patterns for the output signal predicted by
theory.

In order to have different driving chaotic signals, w
produced numerical time series using the exactly solva
map ~3! for different z.

Then, we transformed the numerical time series into a
log signals using a converter. These analog signals plu
subthreshold periodic signal were introduced as the volt
to the concave resistor circuit. The current in the conc
resistor was taken as the output signal.

We should say that the amplification of the SNR in t
interval ln(3/2),l, ln 2 was clearly observed. The max
mum SNR forl5 ln(3/2) was 5 times larger than forl>3
or for any random noise.

We will present further details of these experiments el
where.

Thus, in the case that SR is used for the amplification
small signals~as in the dithering effect! such that the added
external noise is a controllable and manipulable parame
our recommendation is to utilize a uniform chaotic no
with a Lyapunov exponent of the order ofl' ln(3/2).

Using the techniques described in Ref. 46 it is possi
to construct nonlinear circuits with theI –V characteristics
shown in Fig. 18.

For our experiments we used the twin-transis
circuit.46

As an input signal~voltage!, we introduced an analog
chaotic signal previously produced by a nonlinear map.

Playing with different parameters we were able to p
duce different unpredictable dynamics very similar to tho
obtained from our function~2! and Figs. 2 and 3. The sam
results can be obtained when we take the input signal fro
chaotic electronic circuit.

In general, the patterns or absence of patterns~it depends

FIG. 18. I –V characteristic curves of two nonlinear circuits:~a! With some
appropriately chosen input signal, this circuit can produce a very com
output signal~see the discussion in the text!. ~b! If the input signal is com-
posed of a periodic signal and noise, the output signal will be less com
than the input signal. In fact, this will be a stochastic resonance system
Downloaded 08 Mar 2001 to 159.90.160.70. Redistribution subject to 
w

ir-

e
to
ur

le

a-
a
e
e

-

f

r,

e

r

-
e

a

on the nonlinearity! predicted by our theory are complete
confirmed by the experiments.

Some of these experiments are complicated and sh
be explained in a separate paper.

In many relevant applications it is important to get res
nances or~in other cases! to avoid resonances.

Recently a new resonance concept was introduced:
geometrical resonance.47,40

In the usual linear resonance phenomena, the amplit
and frequency of the driving force are the most importa
characteristics. However, in nonlinear systems the shap
the driving signal becomes crucial. The geometrical re
nance considers the amplitude, the frequency, and the s
of the perturbation.

Suppose we have a nonlinear systemA which for some
application should be driven by a specific driving signal w
a given shape. In that case, we can use the output sign
another systemB as the input signal of the systemA. So it is
important to predict the shape of the output of nonline
systems. With such information we can design the appro
ate system to produce the desired signal needed for the
ing of the systemA.

In Sec. VI D we have shown that we can predict spec
patterns and the shape of the output signal of nonlinear
chastic systems. This is a step forward in the control of c
otic and stochastic systems.

In general, it is very important to find patterns and reg
larities in the stochastic dynamical systems. In fact, not
erything that can be observed can be predicted, only
regularities in the observations are the ‘‘province
science.’’48

There are many stochastic systems~including systems
presenting stochastic resonance! where predictions are cru
cial. In this case we mean predictions of the true values
the outcomes using the previous values. Among the c
cerned areas are the following: geophysics, meteorology,
matology, social sciences, etc.49–52

In Sec. VI D we have investigated a system with exter
noise and intrinsic noise. These noisy perturbations are v
unpredictable functions. However, we have shown theor
cally that we are able to make direct predictions of the tim
series outcomes. There are many systems with
behavior.38 When we observe Fig. 14~d!, we note that there
are very remarkable bursts in the time series. In all the m
tioned applications it is very important to predict the
bursts. We have shown that we can do this.

VII. CONCLUSION

In conclusion, we can construct functions that are ex
solutions to chaotic dynamical systems. Moreover, we h
generalized functions that cannot be generated by a fi
recursive algorithm. They can be utilized as theoretical pa
digms of stochastic processes. Considering the fact that t
are explicit functions, we can use them to solve~analytically!
many theoretical problems in stochastic dynamical syste
Thus, we can apply dynamical concepts to describe p
cesses that are usually considered only statistically.28

x

x
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