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We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of
these functions can produce truly random numbers. For the first time, we present solutions to
random maps. This allows us to check, analytically, some recent results about the complexity of
random dynamical systems. We confirm the result that a negative Lyapunov exponent does not
imply predictability in random systems. We test the effectiveness of forecasting methods in
distinguishing between chaotic and random time series. Using the explicit random functions, we can
give explicit analytical formulas for the output signal in some systems with stochastic resonance.
We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence
of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our
models we can predict specific patterns in the output signal of stochastic resonance systems.
© 2001 American Institute of PhysicgDOI: 10.1063/1.1350455

Recently, many outstanding paper§ have stated the im-  influence of the level of chaos on the stochastic resonance
portance of having true random models. The best existing (SR). We can give explicit analytical formulas for the
pseudorandom number generators can yield incorrect re-  output signal of some systems with stochastic resonance.
sults due to the “unavoidable” correlations that appear ~ We show the existence of a new type of solitonic sto-
between the generated valuek:® On the other hand, chastic resonance(SSR), where the shape of the kink is
there is a great interest in random dynamical systems.’  crucial.

In recent years, there has been much discussion about the
transition to chaos and the way to characterize predict-
ability and complexity in these system$:” There is also
strong controversy about the existing methods to distin-
guish chaotic and completely random system%:.° In the
present paper we investigate explicit functions that are
exact solutions to nonlinear chaotic maps. A generaliza-
tion of these functions can produce truly random se-

guences. Even if the initial conditions are known exactly, Knowing the past and present values should give no in-

the next values are in principle unpredictable from the 5 mation as to future outcomes of a truly random varidble.
previous values. These functions cannot be expressed as a 115 a recursive mathematical algorithm should not be able
map of type Xn4+1=9(Xn, Xn-1,--- Xn—r+1). USINg SOMe 4 qescribe a truly random process. From this, it seems, that
of these functions we can exactly solve random maps as geterministic randomness is inherently unattaindble.

the following: Here we have two problems as a motivation for our

Xaa1=F X ), (1) work:

(1) How to describe theoretically these physical phenomena
that are truly random.

(2) How to produce truly random numbers, which are nec-
essary in different physical calculations such as Monte
Carlo method.

I. INTRODUCTION

There is the common belief that, as truly random num-
bers should be unpredictable in advance, they must be pro-
duced by random physical processes such as radioactive de-
cay, thermal noise in electronic devices, cosmic ray arrival
time, etc?

where |, is a random variable. We can confirm the
result®’ that a negative Lyapunov exponent does not im-
ply predictability in random systems. We show that the
forecasting method&~1° are very effective in distinguish-
ing chaos from random time series. We investigate the

The purpose of our study is to find explicit functions that
dElectronic mail: jorge@pion.ivic.ve produce truly random dynamics. These functions can be used
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0 )0('5 1 FIG. 3. Random first-return maps fo 7: (@) first-return map produced by

n function (2); (b) first-return map produced by functid®) and with trans-

formation Y, = (2/)arcsinkX?).
FIG. 1. One-valued first-return map produced by funcii@nwith z=5.

as random number generators and as analytical solutions ¥ should note that their meaning here is very different from
nonlinear random systems. that in their Original definition. In this context, they represent
It is well knowni12that the functionX,,=sind(=2" is  chaotic first-return maps. Farirrational, the first-return map
the general solution to the logistic maj,.,,=4X,(1 IS arandom set of points as shown in Fig. 3.
—X,,). Recently, other chaotic maps have been reported to The paper is organized as follows. In Sec. Il we study
have exact solution$~2°In the present paper we will inves- the properties of the functions,=sin’(#=2"). We present a
tigate in detail a generalization of the solution to the logisticfigorous proof that, foe fractionary, the produced sequences
map are absolutely unpredictable in advance. Moreover, the out-
e N comes are completely independent. In Sec. Il we discuss the
Xn=sir(o7z"), (2)  use of these functions in actual numerical calculations. Sec-
tion IV is dedicated to random maps of typ¥,.,
For z integer, function(2) is the general solution to the =f(X,,l,), wherel, is a random variable. Functid@) can
family of maps help one to find analytical solutions to these maps. We cal-
Xn+1=sin2(zarcsin\/x—n). 3 culate exactly the complexity of a random map. This allows

us to check some recent results about the complexity and
Even for a reakz we can calculate the Lyapunov expo- predictability of random maps. In Sec. V we address the

nent of map(3) exactly:A=Inz problem of distinguishing chaos from random time series.
For z>1, map(3) is chaotic. Nevertheless, for fraction- For this, we check the effectivity of the so-called “nonlinear
ary zthe dynamics contained in functi@®) is quite different  forecasting methods.” Section VI is devoted to stochastic
from that of map(3). In fact, for a fractionaryz, the first- resonance(SR). First we give some introductory remarks
return map generated by E) is multivalued(see Figs. 1 about the historical developments in SR. Considering the fact
and 2. Let z be a rational number expressed masp/q, that we can calculate exactly the Lyapunov exponent of a
where p and g are relative prime numbers. Then the first- class of chaotic maps, we are able to investigate the influence
return map produced by functig®) is a curve such that, in 0f the level of chaos on SR. This is done first in the most
general, for a value o, we will haveq values ofX,,, ;. On  common setup for SR: a bistable system. Then, we investi-
the other hand, for a value of, . ; we will havep values of  gate the so-called nonlinear static systems with SR. For these
X, . Geometrically, these curves are Lissajous figdfeut  systems, we can present explicit analytical functions that de-

scribe the output of the system. Using the functions we can
@ (b) investigate the actual dynamics of the system. Finally, based
N s on theoretical investigations, we show the existence of a new

type of solitonic stochastic resonance, where the shape of the
kink is crucial.

wherez is a real number.

n+1

II. EXPLICIT STOCHASTIC FUNCTIONS

After a rigorous analysis of functiof2) we arrive at
interesting conclusions. For most fractionary 1 function
(2) is not only chaotic, but its next value is impossible to
predict(from the previous valugsinlessé is exactly known.
Whenzis an integer, the initial conditioX, defines univo-
cally the value ofé# (any value of@ out of the interval 0
< #<1 definingX, is equivalent to one in that intervalf z
is fractionary, this is not so. There exists an infinite number

FIG. 2. Multivalued first-return maps produced by functi¢®): (a) z
=3/2; (b) z=8/5.
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TABLE |. Representation of the matrb(ﬁ given by Eq.(5) with z=2 and6,=2"?—1. Note that if we start with the same initial conditions, then we will

have the same chaotic sequences.

0o Oo+1  0p+2  0g+3  Og+4  Og+5  0p+6  Op+T  0p+8  6p+9  0y+10  Gp+1l G+ 12

Xo 0.9291 09291 09291 0.9291 0.9291 09291  0.9291 09291  0.9291 09291 09291 09291  0.9291
X4 0.2634 0.2634 02634 0.2634 0.2634 02634 0.2634 02634 0.2634 02634 02634 02634  0.2634
X; 0.7762 07762 07762 0.7762 07762 07762 0.7762 07762 0.7762 07762 07762 07762  0.7762
X3 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948 0.6948  0.6948  0.6948
X4 0.8481 0.8481 0.8481 0.8481 08481 0.8481 0.8481 0.8481 0.8481 0.8481 08481  0.8481  0.8481
Xs 05151 05151 05151 05151 05151 05151 05151 05151 05151 05151 05151 05151  0.5151
Xo 0.9990 09990 0.9990 0.9990 0.9990 0.9990  0.9990 09990 0.9990 0.9990  0.9990  0.9990  0.9990
X5 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036  0.0036
Xg 0.0146 00146 00146 0.0146 00146 0.0146 0.0146 00146 0.0146 00146 00146  0.0146  0.0146
Xq 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578  0.0578
X, 02181 02181 02181 02181 02181 0.2181 02181 02181 0.2181 02181 02181 02181  0.2181

of values of # that satisfy the initial conditions. The time cannot be determined by any number of previous values. Let

series produced for different values é&atisfying the initial

us see the following example with=3/2. SupposeX,=0.

conditions is different in most cases. The fact that we knowNow we have two possibilitieX,,.;=0 or X,,;=1 (see
the initial conditions does not imply that we can determineTable Il). Assumef,=0 andn=0. For anyd=k (k intege,

0. So the next value is unpredictable.

Let us consider the case=3/2 (see Fig. 2 If we wish
to calculateX,,.; from the valueX, we will have two
choices:

xn+1=%[1i(1_4xn)(l_xn)1/2]- (4)

The valueX,,; could be expressed as a well-defined

function of the previous values if (2X,)*? could be a ra-

tional function of the previous values. However, each time
we try to do this we meet the same difficulty because the

previous values are also irrational functions of the past va
ues. This process can continue up to infinity.

A different way to see this phenomenon is the following.
Consider the family of functions

XK =sir?[ (6y+k) 72"],

where 8= 6,+Kk, Kk is integer.

For allk, the time serieX¥ (k fixed, n as timé have the
same initial conditions. IZ is an integer, the initial condition
defines the complete sequerisee Table). However, forz

5

X,=0. Now, X,,, ;= sir(3/2)kw]. S0,X,+,=0 for k even,
andX,,1=1 for k odd. But there is no way we can kndw
from the statemenX,,=0 (for all k integers this statement is
true). This uncertainty about the next value is present for all
points X,, exceptX,=1/4 andX,,=1. But these two points
are a set of zero measure. That is, for almost all the points in
the interval 6<X,<1, the next value is unpredictable.

For z irrational there are infinite possibilities fof,, 1.

All values are unpredictable. But let us continue with the

I_s|mple case=3/2. Suppose now that=2", wheremis an
integer. Note that in this cas&=0. But, unless we know,

we never will know when the valu¥,,,, will be equal to 1
(see Table . We can have a string ofi+1 zeros (n can be

as large as we wighand only in the pointX,,,,; does the
sequence change from a string of zeros to the value 1. So, for
any finite numbem+ 1 of previous valueX,, X, X,, ...,

Xm: the next value is not defined by the previous values.
Note that in this example we can have a string of zeros, but

this is because the valu§,=0 is a pseudofixed point of the

fractionary all the time series are different. This is becausdnap (X,,X,;1) due to the intersection of the graph in Fig.

the period of functior)(ﬁ (nown is fixed andk is variable is
different for differentn (for instance, wherz=3/2, the pe-
riod of XX is 2"). In general, forz=p/q, the period isq".
That is, X, 1 cannot be determined b¥,,. Moreover,X,, 1

2(a) with the line X,,,;=X,. However, in general, the se-
quence is very stochastic. On the other hand, the uncertainty
about which is the next value remains for all the points in the
interval 0<X,=<1 except forX,=1/4 andX,=1. The gen-

TABLE II. Representation of the matrb(ﬁ defined by Eq(5) with z=3/2 andf,= 1. Note that all the column-sequences possess the same initial conditions

Xo=0. However, all the sequences are different in general.

0o Oo+1  0p+2  0p+3  Opt4  Gg+5 g6  Op+7  0p+8 G+  6p+10  fo+1l  Go+12

Xo 0 0 0 0 0 0 0 0 0 0 0 0 0

X, 1 0 1 0 1 0 1 0 1 0 1 0 1

X, 1/2 1 1/2 0 1/2 1 1/2 0 1/2 1 1/2 0 1/2

X3 0.8535  1/2 0.1464 1 0.1464  1/2 0.8535 0 0.8535  1/2 0.1464 1 0.1464

X4 0.0380 0.1464 0.3086  1/2 0.6913 08535 09619 1 0.9619 0.8535 06913  1/2 0.3086
Xs 0.9157 03086 0.4024 0.8535 0.0096 0.9619 02222  1/2 0.7777 00380 0.9903  0.1464  0.5975
Xo 0.8865 04024 0.2643 009619 00215 0.7777 05490 0.1464 09975 00842 06451  0.6913  0.0590
X5 0.0711 0.2643 05245 07777 09519 0.9975 009016 0.6913 0.4266 0.1828 0.0292  0.0096  0.1295
Xg 0.8447 05245 0.1213 009975 0.1923 0.4266 09087 0.0096 07674 06214 00649 0.9784  0.2751
Xq 0.9686 0.1213 0.7410 0.4266  0.3964 0.7674 01020 0.9784 0.0009 09571  0.1421  0.7137  0.4571
X, 07544 07410 00002 0.7674 0.7275 0.0009 0.7803 07137 0.0021 0.7928 0.6998  0.0037  0.8051
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TABLE lIl. Representation of the matrix‘:, defined by Eq(5) with z=4/3 andéf,= 1/6. Note that the horizontal row-sequences possess periods| 3he
next-values in the column-sequences are unpredictable.

8o Oo+1  0p+2  6o+3  Gg+4  Gg+5  Gg+6  Op+7  6p+8  0+9  6+10  fo+11  go+12
Xo 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
X, 0.4131 09698 0.1169 04131 09698 0.1169 04131 0.9698 0.1169 04131 09698  0.1169  0.4131

X, 0.6434 0.0531 0.2014 0.8431 0.9177 0.3019 0.0134 0.5290 0.9966 0.6434 0.0531 0.2014 0.8431
X3 0.8951 0.4515 0.1712 0.9996 0.1430 0.4903 0.8702 0.0015 0.8139 0.5676 0.0932 0.9906 0.2333
X4 0.9929 0.6920 0.2118 0.0006 0.2556 0.7387 0.9989 0.7933 0.3138 0.0081 0.1616 0.6309 0.9780
Xs 0.6475 0.0675 0.1584 0.7792 0.9668 0.4302 0.0018 0.3463 0.9291 0.8462 0.2261 0.0308 0.5633
Xs 0.0393 0.9703 0.2695 0.3683 0.9239 0.0086 0.7980 0.5534 0.1235 0.9998 0.1420 0.5262 0.8194
X7 0.4955 0.5309 0.4425 0.5837 0.3901 0.6355 0.3390 0.6858 0.2897 0.7340 0.2427 0.7796 0.1987
Xg 0.7550 0.7849 0.8132 0.8400 0.8651 0.8884 0.9097 0.9290 0.9461 0.9609 0.9735 0.9837 0.9914
Xo 0.4054 0.9858 0.1903 0.2718 0.9995 0.3124 0.1565 0.9733 0.4495 0.0686 0.9093 0.5907 0.0151
X10 0.0160 0.6018 0.9938 0.4460 0.0008 0.5054 0.9996 0.5430 0.0045 0.4089 0.9866 0.6383 0.0267

eral uncertainty increases fpe>q>2 (see Table lll. Inthis  riod 2°. That is, the column number®2 1 possesses this
case, the unpredictability is true for all valuesXf. same string. However, the valu¥,, is not alwaysX;,
On the other hand, #is irrational, then the points on the =0.7544.... It can b&,y=0.2455... with the same probabil-
first-return map X,,,X,+1) will fill the square 0=X,<1; ity.
0=<X,.1=<1 (see Fig. 3 and Table IV For a large but finite In general, given an initial string of lengtm, we
numbern, the map is an erratic set of pointare should will find a string identical to it with a periody™. At the
exclude the numbers of type=m'%, wherem andk are  same time, most of these strings possess different next
integers, because in this case the sequence is predictablalues(we have seen a striking example in the above-given
givenk previous values text). Suppose there is a univalent functioX,, 4
Note that we can conside(ﬁ defined by Eq(5) as an =g(X,,,X-1,---.X,_r+1) that is equivalent to the sequence
infinite matrix, where the “columns” are the stochastic se-(2) for z fractionary. If we have more than one sequekge
qguencegdependence on) and the horizontal “rows” are  X;, X,, ..., X,—1 with different next values, then we should
periodic (or quasiperiodic for irrationak) sequences that decide that the map we are looking for cannot be of order
represent the dependence lorFor z=p/q, the “rows” are If for any m, m=1,2,3,..5c; we have more than one se-
periodic sequences with periagl' (see Tables Il and ]I quenceXy, Xq, Xz, ..., X;_1, such that the next values are
We see that all the row sequences have different periodslifferent, then such a map does not exist.
So, all the column sequences are generally different. How- In the above-given text we have shown that for each
ever, for each integem, there is an infinite set of columns string of valuesXy, X;, X5, ..., Xy—1, there is another se-
having a string of values of lengt that is identical in quence with these same values but with different proceeding
each number of this set. That is, in the mat, given an  values.
initial string of lengthm=2, we will find a string identical For z irrational, all the row sequences are quasiperiodic
to it with a periodg?. Note (in Table Il) that the string and different. The column sequences correspond to com-
(0,1,1/2) can be found in infinite columns. However, thepletely random sequences. These functions can produce a set
next value is always uncertain. It can g=0.1464... or of completely independent values.
X3=0.8536.... Just to know that the previous values are
(0,1,1/2) does not give us the knowledge to determine thd!- RANDOM NUMBER GENERATORS
next value. The string(0,1,0.5,0.835...,0.0380...,0.9157..., Now we should say some words about the use of these
0.8865...,0.0711...,0.8447...,0.9686can be found with pe- functions in actual numerical calculations. The argument of

TABLE IV. Representation of the matrixﬁ given by Eq.(5) with z=1 and §,=1/4. Note that it is difficult even to find “clusters” of equal values in
different column sequences. All column sequences are completely random and different.

0o Oo+1  0p+2  0p+3  Opt4  0pt5  0g+6  Og+T  0p+8  6p+9  6p+10  Gpt1l  Got+12
Xo 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
X4 0.3897 0.0516 00457 0.3761 07983 09995 0.8307 04169 0.0646 00348 03494 07756  0.9976
X, 0.9895 0.7599 0.3653 0.0562 0.0286 0.3002 0.6984 09708 0.9444 06359 02412  0.0107  0.0906

X3 0.4950  0.4753  0.4556  0.4360  0.4165  0.3972 0.3780  0.3589  0.3401  0.3216 0.3033 0.2853 0.2677
X4 0.7996  0.4643  0.2603  0.9388  0.0012 0.9002 0.3252  0.3937 0.8535 0.0114 0.9684 0.2003 0.5356
Xs 0.9997  0.9940  0.9807 0.9601  0.9324  0.8982 0.8579  0.8120 0.7615  0.7069 0.6492 0.5892 0.5278
Xe 0.7869  0.5423  0.1479  0.9978  0.0881 0.6342 0.7058  0.0498  0.9849  0.2060 0.4662 0.8458 0.0030

X 0.0521 0.8342 0.7685 0.0216 0.4881 0.9847 0.2517 0.1484 0.9368 0.6171 0.0003 0.6509 0.9186
Xg 0.1640 0.7578 0.3299 0.5757 0.5214 0.3822 0.7096 0.2064 0.8663 0.0746 0.9681 0.0066 0.9997
Xo 0.5777 0.8516 0.9930 0.9485 0.7348 0.4326 0.1558 0.0087 0.0469 0.2559 0.5569 0.8365 0.9891

X10 0.0013 0.0343 0.1084 0.2171 0.3507 0.4976 0.6446  0.7789 0.8885  0.9639 0.9982 0.9885 0.9357
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function (2) increases exponentially. So, there can be some Now, we will define some variables:
problems in generating very large sequences. A practical so-

lution is to change parametetsafter a fixed numben=N m(r)= number off such thatd[ X, X(j)]=<r
of sequence valueX,,. SupposeN is a number for which : N—-m+1 ’
there are not calculation problems. For producing the new set . :

of values ofX,, (with a new#) we start again witm= 0. This whgre _d[x(i),'x(i)] is the distance between two vectors,
procedure can be repeated the desired number of tirees which is defined as follows:

member. that even if the sequence is finite, it will be unpre- d[ X ,X(j)]:ma>(|Ui+k71—Uj+k71|) ®)
dictable; and a sequence formed as a set of unpredictable

sequences will be also unpredictgbld can be shown that with k=1,2,...m.

)

there exists always @such that, with it, the original function Now we can define the measure of randomness:

will produce the same sequence as that generated with the n el

procedure of changing. R(M,r,N) =y~ by 9
For the calculation of truly random numbers with func- where

tion (2) the best way is to use an irratiormlThis irrational

z does not have to be a large number. For instance, we can N-m+1

use z=. The geometrical place of the return map for d)[‘r‘)zm .2 InC"(r). (10

irrational is the whole square<9X,<1; 0=X,,.;=1. So,

we do not have to worry about the method for determining  This measure depends on the resolution parameied

the next value of9. For example, we can use the following 4, “embedding” parametem. This technique has been
method in order to change parameteafter each set oN proved to be very effective in determining system

sequence values. randomnes&!

_ Let us defineds=AWs, wheresis the order number of For givenr andmwe have a maximum possible random-
6 in such a way thas=1 corresponds to thé used for the  oqq A" sequence with maximum randomness is uncorre-

ﬁrft set ofN v’?luesxn; s=2 for the second set, etdNs IS |ated. The randomness of our sequenégswith z irrational
a “stochastic” sequence. For instance, the vall&scan be s the maximum possible for the giverandm. For instance,

obtained from the same sequen¢g. The inequalityA>1 if r=0.025, the maximum possible randomness Rs

should hold in order to keep the absolute unpredictability. _|,40. The randomness of functiof®) with z=m ap-

Another important question about good random NUM+44ches the valuR=3.688 for increasingy. For compari-
bers is to have a generator able to produce uniformly dis

. ) X son, the randomness of the logistic map at the point of full
tributed points. By means of the transformation,  cha0s isR=0.693. Even if we further decreaseand in-

_ Y -
—(2/7T)a_lrcs_,|n(>(n2), we can obtain r:gndom numbers uni- creasem andN, for the logistic map and other usually cha-
formly distributed on the interval (0,13’ Once we have uni- otic maps,R saturates and remains constant.

formly distributed random numbers, we can use well-known 4 the other hand. far— 0. the randomness of function
transformations to generate random numbers with any give@) with z= tends to the maximum possible value, iR.

distribution: - _—In(1/r). Forr—0, it never saturates.

We have performed several standard statistical tests with  \y/e ‘should say that the pseudorandom number genera-
the funct|oqsxf/= si’(0wZ") [after the transformation¥,  tors described in Ref. 1 can pass some of the statistical tests
= (2/m)arcsinG; ?1. Among them are the following: the  geyised to check pseudorandomnstowever, hidden er-
central limit theorem test, the moments calculations, the varizo, s in these generators have been fotiSeveral research-

1 2
ance calculation, and thg” test. The sequenc¥, has s have traced the errors to the dependence in the pseudo-
passed all these tests satisfactorily. For instance, the theoresnqom numbers. Indeed they are all based on recursive
ical values for the moments and variances are the fOHOWi”géIgorithms.

(XH=1(n+1), ay=n?[(2n+1)(n+1)?], and these val- Recently simulations of different physical systems have
ues are obtained when we use the sequefice become the “new tests” for pseudorandom number genera-
The autocorrelation functionCpy=(Y;Yim)=(Y)?  ors] Among these systems are the following: the two-
(where() is the average overallwith i=1,2,3,...) can be gimensional Ising model, ballistic deposition, and random
shown to be zero even fan=1. For the known chaotic y4jks. Nogue et al? have found that using common pseu-
maps(which sometimes are used as pseudorandom nuUmb@srandom number generators, the produced random walks
generators|Cp| decays withm, but there is a range of this present symmetries, meaning that the generated numbers are

dependence fhat is related to the correlation or memory timg,ot independent. On the other hand, the logarithmic plot of
Recently! a new method has been developed, which alithe mean distance versus the number of stdpis not a

lows us to compare the randomness of diﬁe_rent Sequencesyraight line afterN>1CP (in fact, it is a rapidly decaying
In these works, a measure of randomn@ss will call it R) function).

is introduced. D’'Souzaet al? use ballistic deposition to test the ran-
Suppose we have a sequence of valueomness of pseudorandom number generators. They found
U;,Uz,Us,...,U,. Form a sequence of vectors correlations in the pseudorandom numbers and strong cou-
pling between the model and the generdwmren generators
Xiy=[ViUit1,. o Ujymoal (6) that pass extensive statistical tgsts
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107 ; . : wherel , is a random variable that takes the value$ with
equal probability.
An exact solution to this random map can be written as

10° follows:
X =Ssirf[ 6 (3/2)"]. (13
N_g 10° Now we can check some of the results discussed by the
v authors of Refs. 6 and 7. They have introduced a measure of

complexityK in terms of the average number of bits per time
100 | ) ] unit necessary to specify the sequence generated by the sys-
tem. In dynamical systems of typd) [Eq. (12) is an ex-
amplg this measure coincides with the rd€eof divergence

10° L - - . , of nearby trajectories evolving under two different realiza-
10 10 10 10 10 tions of the random variablkg, .
N The complexity of the dynamics can be measured as
FIG. 4. Mean distance vs number of steps for a random walk generated K=X\6(\)+h, (14)
with the random number¥ = (2/m)arcsink%?), where X,, is given b . .
function (2). = (2m) 9 n 9 Y where is the Lyapunov exponent of the méapis the com-

plexity of I,,, and #(\) is the Heaviside step function. Com-
plexity h should be defined also as the average number of
o - ] bits per time unit necessary to specify the random variable
In a ballistic deposition model of growth, free particles I,. Whenl, is a usual chaotic noise, théncoincides with
initiated at random positions above a one-dimensional sub[he Kolmogorov—Sinai entropy.
strate, descend ballistically and stick upon first touching the |, the case of the random man2) A=In(3/2) and h
surface of the growing cluster. The substrate of length _ 52 Hence K =In3. On the other hand, any calculation
consists of discrete columns indexed by integer values of heqretical or numericabf K for the dynamics generated by
with 1sx< L.. The.growth interface is defined by the maxi- f,nction (13) yields the correct valu&k =In3. Moreover,
mum occupied site along each columin(x,L), whereé  eyen an independent calculation of the complexity of this

h(x,L) also takes on discrete values. ~ dynamics using different methcd$* produces the same re-
The width of the growth interfacé, (t) on average in- ¢ ;.

creases following a power law behavior until reaching a

i ¢ ! Using the function2) we can also solve the map
steady asymptotic value, the magnitude of which depends on

the underlying substrate size For & (t) we have 1+1,W1-X,
L Xni1= ", (15
1
&)= [le [h(x,t) = (h(t)) 1, (1) wherel, is defined as in Eq12).
Here the Lyapunov exponent is negatiwe:In(1/2)<0.
where(h(t)) is the mean height of the surface at time However, the complexity is positivés =1In 2.

One consequence of the Kardar—Parisi-Zhang theory is  |n the presence of random perturbatioksgcan be very
that the steady state behavior for the interface fluctuations igifferent from the standard Lyapunov exponent and, hence,

one dimension should resemble a random walk, €e(t  from the Kolmogorov entropy computed with the same real-
—m»)~LY2 Thus, a random walk again serves as a good teskation of the randomness.

for random numbers. These two paperbave been cited by We stress that a negative value »fdoes not imply
Fisher in his article about the great problems of statistical predictability.
physics for this century. In general, if we apply the measure of complexityto

With our numbersy,,, the produced random walks pos- our function (2), then we obtain the following results: For
sess the correct properties, including the mean distance be=p/q (p andq relative primey K=Inp. If zis irrational,
havior (d?)~N (see Fig. 4 the complexity is infinite!

We should say that using functiof2) we can create
complete sets of orthogonal elements. In the same way that
IV. RANDOM MAPS we can solve, to begin with, any map of type,,;
=f(X,), we can also solve theoretically many important

The functions 0f2) are important not only for numerical problems in stochastic dynamical systems.

simulations. They are relevant by themselves as theoretical

paradigms of stochastic proceséa3onsidering the fact that
these are explicit functions, we can use them to s¢@vre- V. NONLINEAR FORECASTING METHODS
lytically) many theoretical problems in stochastic dynamical
systems.

Consider the following random ma&p:

Now we address the problem of deciding which of the
proposed metho8s!® for distinguishing chaos from random
time series are more effective. Recently a new method based
Xns1=H1+1,(1—4X,)(1— X3, (12)  on nonlinear forecasting was propoged The idea of the
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FIG. 5. Predicted values one step into the future vs observed values for thrt'eght and is amplified.

time series generated by functid®) with z=e, after the transformation
Y= (2/m)arcsing?). ) _ . _
judgment about whether there is an attractor of given dimen-

sions.

method is as follows. One can make short-term predictions
that are based on a library of past patterns in a time seriegl. STOCHASTIC RESONANCE
(the method of nonlinear forecasting is described in Refs
8-10 and the references quoted thexeBy comparing the
predicted and actual values, one can make distinctions be- A phenomenon that has awakened very much interest in
tween random sequences and deterministic chaos. last several years is stochastic resonai$#®.?>~*°The clas-
For chaotic(but correlategitime series, the accuracy of sical model for this phenomenon is the following:
the nonlinear forecast falls off with increasing prediction- . 3 A
time interval. On the other hand, for truly random sequences, X~ XX =Aosin(wt) + 7(t). (16)
the forecasting accuracy is independent of the prediction in- The sum of a noise signak(t), and a weak periodic
terval. The decrease with time of the correlation coefficientsignal is used to drive a bistable system. The most important
between predicted and actual values can be used to calculatharacteristic of SR is that the signal-to-noise rdiNR)
the largest positive Lyapunov exponent of the time seties. has a maximum in the plot SNR \B, whereD is the noise
Function(2) is a very good model system to check this intensity, for a finite nonzero value of the noise intensity.
and other methods. In fact, farinteger, these are chaotic It has been shown that SR still occurs when chaos, rather
sequences of typX, . ;=f(X,). Forz=m¥, we have cha- than noise, is used as the nonperiodic component of the driv-
otic maps of typeX,.1=9(X,,Xn_1,.--Xn_k+1).- FOr z  ing signal?’ Several authors have investigated the SR in cha-
fractionary, we have different types of random sequencestic systemg’~32
with different complexities. Finally, foz irrational (generig, A very important question is how SR depends on the
the sequence is maximally random. largest Lyapunov exponent of the driving chaotic ndise.
Suppose we have a sequerde,U,,....Uy. Now we  We address this problem systematically for the first time,
construct a map with the dependerigf®®*®as a “func-  since we can solve exactly the problem of calculating the
tion” of yopserved Lyapunov exponent. We should say that for large values of
If we have a correlated chaotic sequence, this deperthe Lyapunov exponent, the SR is not a very sensitive phe-
dence is a straight line, i.eyPredcted yobsevedwhen the  nomenon on the level of chadis is unlike the phenomena
forecasting method is applied for one time step into the fu-discussed in Refs. 1+.3The curve SNR v® practically has
ture). When we increase the number of time steps into theno variation forA>In3. However, in the interval In(3/2)
future, this relation deteriorates. When we apply this method<\ <In 2, the SR strongly depends on the Lyapunov expo-
to function (2) with z== [after transformationY, nent. In this interval, the maximum of SNR is shifted to the
= (2/m)arcsinyX,], even the mapJCPsevedys yoPsevedgor  right (larger noise intensitigsand is amplified! Figure 6
one time step into the future is a map equivalent to thashows the dependence SNR( for different values of the
shown in Fig. 5. On the other hand, the correlation coeffi-Lyapunov exponent. These data are the result of numerical
cient is independent of the prediction time. In fact, there aressimulations of Eq(16). We can compare this result with that
no correlations. The details will be given elsewhere. Neverobtained in Ref. 33. In this work, the phenomenon of sto-
theless, we should say that this method is quite efficient irthastic resonance is studied in the presence of colored noise.
distinguishing chaos from randomness. However, it cannoin overdamped systems, the authors find that SR is sup-
distinguish between different random time series. pressed with increasing noise color. In contrast, for colored
Other methods discussed in Ref. 8, are less effective imoise induced by inertigas well as for asymmetric dichoto-
this task. They are more qualitative, requiring subjectivemic noisg, they obtain an enhancement of SR.

A. Lyapunov exponents
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The same result can be obtained in the so-called thresh-
old systems*~3¢For instance, define

[h=9(Pnt 7n), (17

where p, is a periodic function,n, is some kind of noise,
and g(x) is a function with some properties that allow the
existence of SR

The simplest case is the following:

=V, X<X 18
X =
g(x) VXS X (18
A nonlinear circuit with this kind of threshold nonlinear-
ity is discussed in Ref. 36.
Different measures have been used to characterize sto-

Gonzalez, Reyes, and Guerrero

4

6

8

chgstlc resonance. In pgrUcuIar, in Ref. 41 the dynamics of, ;. Functiork (D) as given by Eq(22). Solid line,z=1.5; dotted line,
noisy bistable systems is analyzed by means of Lyapunoy=2: dashed linez=2.5; dot-dashed linz=3. Note that ag is decreased,

exponents and measures of complexity.

the minimum of functiorK (D) is deeper and is shifted to the right.

It can be shown that, in stochastic resonance systems,

the functionK(D) (whereK is the complexity as defined
previously and is the noise intensijyhas a local minimum

In some cases, for a finite value bf we can find the

for a nonzero value ob. This minimum represents an opti- least complex dynamics.
mal value of noise intensity at which SR occurs. This result ~ In some sense, this is a more general phenomenon than

confirms the findings of Ref. 41.

the usual stochastic resonance. In fact, this is an example of

We can consideK as a “dynamical measure” of SR the so-called noise-induced disorder—order transitions, of
becauseK coincides with the rate of divergence of nearbywhich the SR phenomena can be a subset.

trajectories evolving under two different noise realizations.

In Fig. 8, different time series and return maps produced

This measure can be used to characterize more gener@y the dynamical systert20) are shown. Note that for some

stochastic dynamical systems such as the following:

xn+1:F(xnvpn17]n)a (19)

wherep, is a periodic function andy, is the noise.
Let us investigate a particular example:

Xn+1=CO$’{[1+ €(p,+D ﬂn)z]afCCO$Xn)}- (20

Herep, is a periodic function of amplitude and », is
a chaotic noise defined as follows:

M=Yno— -1, (21)

where 6 is a parameter for which €6<1 and Y.,
=sir?(zarcsin/Y,).

For this dynamical system, functidd(D) has a mini-
mum for a finiteD.

Let us suppose that, is a period-one function. We can

write down an analytic expression &

K=Injz

€
1+ E((a—D5)2+(a—D(Z—1))2) } (22
The functionK (D) is shown in Fig. 7. For a fixed, the
minimum of K is obtained approximately foD=a/(z
—1). If we minimize K with respect to botlD and z, we
obtainD=a/é, z=1+6.

intermediate value dD we obtain the least complex dynam-
ics.

In Fig. 9 we see that when bofhandz are very close to
the optimal values, then the resulting dynamics is very pre-
dictable.

Note that this system can be chaotic even wbenO,
due to the intrinsic nonlinear dynamics of the system. How-
ever, for some finite value of the noise intensidy~0, we
can control this chaotic dynamics. So, in this case, we are
truly controlling the chaotic system using chaotic noise.

B. Explicit output functions for SR systems

Recently scientists have learned that stochastic reso-
nance can appear not only in bistable syst&tn& A very
interesting class of systems is that of the so-called nonlinear
static(or “nondynamical”) systems. In Refs. 36—38 a theory
of these systems is presented. Using this theory and our func-
tion (2) we can write down an explicit “solution” function
to these systems. For instance, the function

I ,=tanH B[ Ag sin(wn)+ D cog 07z") — Vy,1} (23

can behave as a SR system. Figure 10 shows that the func-
tion (23) is a SR system foB=24. ForB=1 the stochastic
resonance disappears. Here the SNR was calculated numeri-

Note that for 1+ §<z< 3, the minimum is deeper and is cally using function(23) as the output signal. In fact, we can
shifted to the right az is decreased. This is a phenomenonconstruct a very general class of SR functions of type
similar to that obtained using SNR in Fig. 6. See also Sec=g(V,)+ &,, whereV,=p,+ 7, is the input and, is the

VI E, where some experiments are mentioned.

We should say thaK can characterize the dynamics of

output. Functioné, represents the intrinsic noisg.
Note that although the systems described in Refs. 36—38

dynamical systems of type9) even when there is no peri- are called “static systems,” once we have constructed our

odic function at all.

explicit functions, e.g., Eq(23), we can obtain exact solu-
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tions to very dynamical systems. Also note that it is very  The analysis of functior(2) allows us to construct a
easy to check that there is a maximum in the dependenceontinuous and differentiable function with properties simi-
SNR vsD; however our explicit functions can be investi- lar to those of the chaotic functior{). Let us give an ex-
gated using mathematical analysis, not only statistics. Verample:

different functions with very different dynamics can have the
same SNR behavior and other statistical properties. Using
our explicit functions we can investigate the true dynamics
of the system. +B, coslja; coq wst) +a, cog wyt) |} (29

f(t)=sin{B; sinf{ a; cog w1t) +a, cog w,t) ]

a)

FIG. 9. Time series generated by the
10 | A noise-driven dynamical systertR0).

1 (@ D=2, (b) D=10. In all cases

L £=0.5,a=1, 6=0.1,z=1.1. Note that
b) in case(b) the control is so good that

00 ' the output signal is almost periodic
and is confined to a very narrow inter-
val of values. Note also that in this

-0.995 b case the noise intensity is 5 times

I larger!
=
X
-1.000 |
1000 1100 1200

n
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FIG. 10. The explicit functior(23) can behave as a stochastic resonanceFIG. 12. SNR vs noise intensityD() for the dynamics of systerti6). Here
system. SNR vs noise intensit} is shown forB=24 andB=1. Note that  the “noise” 7(t) is defined asy(t) =In[f(t)/(1-f(t))], wheref(t) is given
for B=1 there is no maximum in this plot. by Eq.(24).

Using functions of this kind we can find analytic solu-
tions to continuous chaotic dynamical systems. Fundi2dh
with the parameter value8,=20, B,=30, a;=10, a,
=15,a;=10,a,=15, w;=1, w,=m, w3=12, ws=¢, be-
haves as a chaotic systefsee Fig. 1L Any investigation
(theoretical or numericalwill give the same result: The
maximum Lyapunov exponent is positive. Moreover, if we  ¢(x,t)=tanqB[x—xo— Asin(wt) —Df(t)]}, (29
‘rjee_d a continuous dynamics with a chaotic Gaussian-likgeref (1) is defined in Eq(24), can be used to find analytic

noise we can use a transformation of Eq24): 9(t)  goyytions to nonlinear partial differential equations.
= In[f(O)/(1-(D)]. We have been able to produce SR with  po e that functior(25) is a SR solutiorisee Eq(23)].
function (24), f(t), andg(t). In Fig. 12 SNR is calculated  pq jnstance, if we take the time series produceddf
from numerical simulations of Eq16) and using the con- —0¢) [with B=12,A=0.67,w=0.88,x,=2, andf(t) is the
tinuous chaotic functiog(t) = In[fAO)/(1— (1)1, wheref(t)  ,nction (24)] we obtain a new kind of SSR fror25). In
is defined by Eq(24). fact, using the solution(25) we can prove that the over-
damped perturbeg” equation

potential. The situation for SSR can produce very interesting
phenomena like the transformation of the soliton into a three-
“particle” system of two solitons and an antisolit4f.

Here we will present another framework for SSR.

The function

C. Solitonic stochastic resonance

The spatiotemporal SR in the* model has been consid- Dr— Pyy— B p— %)= BLwA codwt) +DF(1)] +

ered in a very interesting pap&rRecently we introduced the cosi[B(x—Xo)]

concept of solitonic stochastic resonan@&SR*° where a (26)
soliton moves in a bistable potential created by spacewhereF (x)=atanjB(x—xy)], possesses a different kind of
dependent external forces driven by a periodic signal angsRr.

noise. This seems to be equivalent to the conventional setup We can calculate analytically the SNR for the dynamics
for SR, however the conditions for the existence of SSR aref Eq. (26).

different from that of SR with a point particle in a bistable Suppose that, in Eq26), instead off(t), the noise is
described by the functioh(t) = (2/7)arcsinf(t), andf(t) is
given by function(24). This is equivalent to a uniformly
distributed noise in the intervd0,1). We will define b/2

F(x),

=Xo—A.
0.5 ] 0Following the ideas of Ref. 34, we can calculate an ap-
proximate analytical expression for the SNR wign 1:
£ o ] ( D b
he 0 for E<§—A
-0 \ SNR={ £(9—£+2A for 2oa=2Pia
D\2 2 2 2 2
3 , s 2A D b
0 20 40 60 80 100 | D or 5> +A.
t[a.u.]

It is evident that there is a maximum in the curve
FIG. 11. Chaotic time series generated by the continuous fun¢2iéyn SNR(D).
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30 S e S A solitonic stochastic resonance. The shape of the output signal
o9 | ] possesses patterns that are very different from that obtained
o™ in a bistable system. They are more similar to the patterns
o°0 Coooec?, .
28 1 L O'Q‘o\o 1 that appear in threshold systems.
o
27 t b a
o« ¢ ~
Z26| e ] . .
) d o D. Patterns in the output signal of SR systems
2y ,O/ ‘\O ] Once we have an explicit solution that describes the sto-
24 1 © 1 chastic resonance system as the following:
23 p 1 [(t)=g(P(t) + n(t)) (27)
22 and

0 2 4 6 8 10 12 14 16 18 20
D L) =g(P(t) +n(t)) + &(1), (28)
FIG. 13. SNR vs noise intensityD) for the dynamics of systeni26).  whereP(t) is a periodic functiony(t) and&(t) are different
The SNR is calculated from the time series generated by the functio%anifestaﬁons of noise dynamics, we can calculate the SNR
=04). o .
$(x=09 exactly. We should note that SNR is the main measure of
stochastic resonance and is widely used in SR literature.
_ _ For instance, let us define the different noises as follows.
Our theoretical results on the theory of solitons per-£(t) is a white noise with zero mean and correlation func-
turbed by external forc8%“*®allow us to understand the dy- tion:
namics of Eq.(26) and to interpret the physics of solution B
(25). In order to obtain the desired dynamics we should solve (€V&(t+7))=Qd(7), (29)
Eq. (26) with an initial condition representing a soliton situ- whereQ is a constant parameten(t) is a Gaussian noise
ated in a vicinity of pointx=X,. In this case, the soliton with zero mean and correlation function:
center of mass will be oscillating inside the potential well 5 _
created by the forc& (x). This is exactly what represents {(n()n(t+ 7)) =0 exp( =7/ 7). (30)
solution (25). Following Ref. 38 we can consider the case

When we investigate the time series obtained after the g(V)=V?3 (31)
numerical simulation of Eq26), we obtain SSR as predicted '
by the theoretical solutiof25). where

The SNR vsD plot depends on the value 8f Eor very V=a sin(wot) + 7(t). (32)
large values oB, the SNR vsD plot has a very nice maxi- _ _
mum (see Fig. 18 The SNRD) dependence shown in Fig. In this case the SNR is
13 was calculated numerically from the time series generated 2 4 4 2 6

. : + +

by the function(x=0;t) as a solution of Eq(26). The SNR= 7 18a"0"+ 900"+ (9B)a . (33
same result is obtained if we investigate the analytic solution 2Q+ 7e(440°+ 540”0+ (2712 a*0?)

(25). For very small values B, the SSR disappears. Thus, This is exactly the SNR obtained in Ref. 38.

this is a SSR that depends on the shape of the soliton. In e static character of the present nonlinearities allows a
particular, it depends on the width of the soliton, which cangrect statistical analysis, in which all quantities relevant to

be expressed &= 1/B. This SSR is different from the one  cpapacterize the SNR in the output signal can be obtained
obtained for a soliton moving in a bistable potential Well o statistics computed directly on the input noises. In fact

and that described in Ref. 39. _ the SNR is a statistical measure based on the statistical prop-
In Ref. 39 the synchronization of a linearly coupled gpjes of noises;(t) and £(t).

chain of N overdamped bistable elements, subject to a deter-  Neyertheless. we believe that using our explicit func-

ministic periodic signal and uncorrelated white noise, is adsjons we can obtain much more information about the output
dressed in the continuous limit of¢f' theory. The coopera- signal. Some of this information can have statistical charac-

tion between noise and coupling is shown to lead g pyt we will have also dynamical and geometrical infor-
spatiotemporal stochastic resonance. There, the bistability ¢f,ation about the output signal.

4 H H 2 2
the ¢* equation on the potentidl (¢)~ (¢~ 1) plays the For instance, we can predict the values of the local

most important role. On the other hand, in our previousyayima and minima in the time series, and the distance be-

papef® we considered the stochastic resonance of a solitofyeen them. We can obtain the exact analytical shape of the
moving in a bistable potential created by inhomogeneoug,irema.

external forces=(x). In this paper, the output signal is the | any stochastic resonance output signal there are pat-

coordinate of the soliton center of mass. In the present Workerns. These patterns can be different for different systems.
the relevant output signal ig(x=0,). The soliton is mov-  the following function

ing in a monostable well potential created by inhomogeneous _ .
external forces. However, the most striking feature is that the _tanfiB(Asin(wn)+D cog §mz")) — V] +1 (34
width of the soliton determines the existence or not of the n 2
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15 . : © ent stochastic resonance syster.
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function (36), (d) function (39).
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is the analytical solution for a circuit with-V characterist
of type

0
1

for Vi,
for V>V,

(see Ref. 36 A typical time series is shown in Fig. (.
In Fig. 14b) is shown the typical time series for

(V)=

-1 for V<-0.5
g(V)=1{ 0 for —0.5<V=<0.5 (35
1 for V>0.5.
In Fig. 14(c) we show the function
tanhBV,) +1
"= 2”) " (36
where
V,=Asin(wn)+D cog 72", (37)

900

ic

Figure 14d) shows the output signal

[h=9(Vy)+&n,

where g(V)=V3, V,=asinwn+7,, 7,=DY,, Y,
=In(X/1—X,), Xp=sir(67Z"), é&,=QInZ,/(1-Z,), and
Z,=sirt(6m ).

All these systems present stochastic resonance. All these
systems can be tuned to have the same SNR. However, note
that all the patterns are different. Compare them to the typi-
cal time series of a classic bistable stochastic resonance sys-
tem shown in Fig. 15. The information about these patterns
is in the explicit functions that can be written down using our
stochastic functions.

We can even make predictions about the outcomes in
these stochastic systems. For instance, in the fun¢8dn
we can say that with a probability=0.8, after the function
I, has taken the valug,=1, it will take the valuel ,=0.
Meanwhile, we can expect that it will remain in the state

(39

which is the output signal for a circuit system with the char-1n=0 for an average time aproximately equal to the period

acteristic
g(Vv)= [

0 for V<V

b(V—Vy,) for V>Vy,. (38)

of the periodic input signal.

On the other hand, the output functi@®6) will give us
much more information about the actual shape of the input
periodic signal than the function(84) and(35).

FIG. 15. Typical time series for a bistable stochastic
resonance system such as that described by ).

300 400

500
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(a) (b)
150 T " T " 150 T T
50 r 7 50 T FIG. 16. First-return map produced by
. function (39), which describes a sto-
p A» chastic resonance system with intrinsic
_c : noise.(a) Situation of stochastic reso-
_50 | 50 | . i nanceD=0.16. (b) Situation out of
. stochastic resonand2=0.3.
-150 L . : - -150 L :
-150 -50 | 50 150 -150 -50 I 50 150
n n

Systems with intrinsic and external noises are expected For example, the following system can produce a dy-
to be very random. Nevertheless, using the theoretical infornamics similar to that obtained with our functioX,
mation obtained from our explicit functiofd9), we can  =sinX(6n2"):
make very remarkable predictions. For instance, if the output

signal takes a “large” negative valugay|,= —20), then ax, if X,<Q

Xn+1= . 40
with absolute certainty we can predict that the next values el by, if X,>Q, (40
will be negative andl,|—0. Whenl,, reaches the valuk, ) )
=0, we can predict that the next value will be positive, but ~ Yn+1=Ssin(d arcsin/Yy), (41)
the exact value is unpredictable. When it takes this positive (X.), (42)
value, the next value will be negative with absolute certainty. Zn+1=9(Xy

The larger the absolute value bf when it takes a positive whereg(X,) is a function with several maxima and minima.
value, the larger the absolute value of the next negative valug€he first return map is shown in Fig. 17. In fact, this is a
that it will take. Note that all the randomness of this dynam-completely new chaotic phenomenon because the dynamics
ics is produced whet, is near zero. Whem, is far from is completely unpredictable. So, when the input is a simple
zero, we can make exact predictions of the next values. Althaotic signal and the system is an electronic circuit with the
this can be corroborated when we observe the first-returh—V characteristic shown in Fig. 18, then we will have a
map of this dynamicsFig. 16). very complex output. This phenomenon is the opposite to the
We can see the stochastic resonance as a phenomenstachastic resonance. Compare tweV characteristic

that transforms a complex dynamics into a simpler one. Thaturves for a phenomenon that simplifies the dynamics and
is, the output signal is less complex than the input signal. Bufor a new phenomenon that makes the dynamics extremely
there are also phenomena that lead to a more complex beemplex in Fig. 18. In Ref. 46 a theory of nonlinear circuits

havior (e.g., the chaotic systems is presented. There we can find different methods to con-
Using our functions we can predict the existence of newstruct circuits with thesé—V characteristic curves.
complex phenomena. All the results presented in Sec. VID, which are re-

After an analysis of the functions, = sirf(#nz"), which  lated to Figs. 14—-18 were obtained through theoretical
we have shown to produce complex dynamics, the first charealculations.
acterics that surface are the following: The function can be
rewritten in the formX,=h(f(n)), where the argument
function f(n) grows exponentially and the functidr(y) is
always finite and periodic.

However, a more thorough analysis shows ftiatpro-
duce complex behavipthe functionf(n) does not have to
be exponential all the time, and the functibfly) does not
have to be periodic.

In fact, it is sufficient that the functioh(n) be a nonpe-
riodic oscillating function where there are repeating intervals
with finite exponential behavior. For instance, this can be a
chaotic function. On the other hand, functibfy) should be
noninvertible. In other words, it should have different
maxima and minima. The inverse “function” #f(y) should
be multivalued.

FIG. 17. First-return map produced by the dynamics of variahlén the
The complexity of the output dynamics is proportional to gynamical systen40)—(42). (a) Functiong(x) possesses 1 local extremum.
the number of extrema of functiam(y). (b) Functiong(x) possesses 100 local extrema.
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(a) (b) on the nonlinearity predicted by our theory are completely
I | confirmed by the experiments.
Some of these experiments are complicated and should
be explained in a separate paper.
In many relevant applications it is important to get reso-
/\ /\ A /\ /\ nances ofin other casesto avoid resonances.
\/ \/ \/ \/ \/ v v Recently a new resonance concept was introduced: the
geometrical resonanéé#°
In the usual linear resonance phenomena, the amplitude
and frequency of the driving force are the most important
characteristics. However, in nonlinear systems the shape of
FIG. 18.1-V characteristic curves of two nonlinear circuita) With some the driving signal becomes crucial. The geometrical reso-
appropriately chosen input signal, this circuit can produce a very complex id h litud h 'f d the sh
output signaksee the discussion in the textb) If the input signal is com- hance consi er§ the amplitude, the irequency, and the shape
posed of a periodic signal and noise, the output signal will be less comple®f the perturbation.
than the input signal. In fact, this will be a stochastic resonance system. Suppose we have a nonlinear systArwhich for some
application should be driven by a specific driving signal with
a given shape. In that case, we can use the output signal of
E. Applications in real systems another systerB as the input signal of the systefn So it is

In this section we will present some examples that shoWmPortant to predict the shape of the output of nonlinear
how our technique can be used in real world applications. SyStems. With such information we can design the appropri-

Our group has designed and constructed a nonlinear ci@t€ System to produce the desired signal needed for the driv-
cuit (using a concave resisfowith the |-V characteristic "9 Of the systema. _ B
described by Eq(36) (see Ref. 46 We wished to check our In Sec. VID we have shown that we can predlct. specific
theoretical results about the dependence of SNR on thBalterns and the shape of the output signal of nonlinear sto-
Lyapunov exponent of the chaotic noise. We also desired tghastic systems. This is a step forward in the control of cha-

observe the patterns for the output signal predicted by ouftic and stochastic systems. _
theory. In general, it is very important to find patterns and regu-

In order to have different driving chaotic signals, we larities in the stochastic dynamical systems. In fact, not ev-

produced numerical time series using the exactly solvabl€'Ything that can be observed can be predicted, only the
map (3) for differentz. regularities in the observations are the “province of

i 48
Then, we transformed the numerical time series into anaS¢!€Nce: _ _ .
log signals using a converter. These analog signals plus a 1heré are many stochastic systefirscluding systems

subthreshold periodic signal were introduced as the voltagBr€Senting stochastic resonaneehere predictions are cru-

to the concave resistor circuit. The current in the concav&i@l- In this case we mean predictions of the true values of
resistor was taken as the output signal. the outcomes using the previous values. Among the con-

We should say that the amplification of the SNR in theCerned areas are the following: geophysics, meteorology, cli-

; ; 52
interval In(3/2)<\<In2 was clearly observed. The maxi- Matology, social sciences, élﬁ:'_ _
mum SNR for =In(3/2) was 5 times larger than for=3 In Sec. VI D we have investigated a system with external
or for any random noise. noise and intrinsic noise. These noisy perturbations are very

We will present further details of these experiments elseYUnPredictable functions. However, we have shown theoreti-
where. cally that we are able to make direct predictions of the time-

Thus, in the case that SR is used for the amplification of€"€S OlBJtcomes. There are many systems with this
small signals(as in the dithering effettsuch that the added behavior?® When we observe Fig. 14), we note that there
external noise is a controllable and manipulable parametef'® VEry remarkable bursts in the time series. In all the men-
our recommendation is to utilize a uniform chaotic noiselon€d applications it is very important to predict these
with a Lyapunov exponent of the order dfIn(3/2). bursts. We have shown that we can do this.

Using the techniques described in Ref. 46 it is possible
to construct nonlinear circuits with thie-V characteristics

shown in Fig. 18. _ ~ VIl. CONCLUSION
For our experiments we used the twin-transistor
circuit.® In conclusion, we can construct functions that are exact

As an input signalvoltage, we introduced an analog solutions to chaotic dynamical systems. Moreover, we have
chaotic signal previously produced by a nonlinear map.  generalized functions that cannot be generated by a finite
Playing with different parameters we were able to pro-recursive algorithm. They can be utilized as theoretical para-
duce different unpredictable dynamics very similar to thosedigms of stochastic processes. Considering the fact that these
obtained from our functiori2) and Figs. 2 and 3. The same are explicit functions, we can use them to solaralytically)
results can be obtained when we take the input signal from many theoretical problems in stochastic dynamical systems.
chaotic electronic circuit. Thus, we can apply dynamical concepts to describe pro-
In general, the patterns or absence of pattétrtepends cesses that are usually considered only statistiéally.
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