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Abstract

We investigate the dynamics of solitons in generalized Klein–Gordon equations in the presence of nonlinear dam
spatiotemporal perturbations. We will present different mechanisms for soliton explosions. We show (both analytic
numerically) that some space-dependent perturbations or nonlinear damping can make the soliton internal mode unsta
to soliton explosion. We will show that, in some cases, while some conditions are satisfied, the soliton explodes be
permanent, extremely complex, spatiotemporal dynamics. We believe these mechanisms can explain some of the p
that recently have been reported to occur in excitable media. We present a method for controlling soliton explosions.
 2005 Elsevier B.V. All rights reserved.
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Solitons are used in many important technologi
applications. Among these applications we can m
tion long distance communication systems and sol
oscillators in superconducting devices[1].

However, under certain conditions, solitons c
become unstable[2–4]. Such instabilities have bee
called both soliton breakup and soliton explosio

* Corresponding authors.
E-mail addresses:jorge@pion.ivic.ve(J.A. González),

lguerre@usb.ve(L.E. Guerrero).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.02.018
For instance, Milchev and coworkers have stud
the Frenkel–Kontorova model with anharmonic
teratomic interactions[2]. They have found that, in
the Frenkel–Kontorova model with nonconvex int
actions between closest neighbors, a breakup of
kink takes place when the effective amplitude of
sinusoidal substrate potential exceeds a certain cri
value.

An extensive discussion of soliton dynamics in t
framework of the Frenkel–Kontorova model can
found in the recent book[5].
.
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On the other hand, in Ref.[3] it was predicted tha
the soliton internal mode can become unstable lea
to soliton explosions.

Such instabilities as soliton explosions can aff
all the mentioned applications. So it is very importa
to understand all the possible mechanisms of sol
explosions in order to avoid them.

In the present Letter we investigate generaliz
Klein–Gordon equations as the following

(1)φtt + R(φt ) − φxx − G(φ) = F(x, t),

whereG(φ) = −∂U(φ)/∂φ, U(φ) is a potential func-
tion with at least two minimaφ1, φ3 and a maxi-
mum φ2, such thatU(φ1) = U(φ3) = 0, R(φt ) are
dissipative terms, andF(x, t) represents external pe
turbations. We are interested in kinks, that is, topolo
cal solitons between the pointsφ1 andφ3. The famous
sine-Gordon andφ4-systems are particular cases
Eq.(1).

The topological solitons studied in the present L
ter possess important applications in condensed
ter physics—they describe domain walls in ferrom
nets and ferroelectric materials, dislocations in cr
tals, charge-density waves, interphase boundarie
metal alloys, fluxons in long Josephson junctions a
Josephson transmission lines, etc.[6].

We will present different mechanisms for solito
explosions. We will show that in some cases, wh
some conditions hold, the soliton explosion is perm
nent.

A soliton destruction is observed when inhomog
neous space-dependent perturbations are present

(2)φtt + γφt − φxx − G(φ) = F(x).

We should say that the zeroes ofF(x) are candi-
dates for equilibrium positions for the soliton[3]. If
F(x) possesses only one zerox∗

0 (F(x∗
0) = 0), then it

is a stable position for the soliton if(∂F/∂x)x∗
0

> 0.
Otherwise, the position is an unstable equilibriu
The opposite is true for the antisoliton. The cen
of mass of a soliton can make oscillations aroun
stable zero ofF(x), and it can move away from a
unstable one. However, whenF(x) has an unstabl
zero atx = x∗

0 and additionally, the following condi
tions holds limx→±∞ F(x) = ∓F∞, F∞ > 0 andF∞
is larger than some critical value, then the soliton c
be destroyed and an antisoliton is “created” in
equilibrium positionx = x∗.
0
When the soliton is in an unstable equilibrium p
sition, it is “stretched” by the pair of forces that a
acting on its body in opposite directions. And there
a limit for the magnitude of the pair of forces that t
soliton can resist. Nevertheless, there is a more
tle mechanism for soliton destruction. When a soli
is close to an unstable equilibrium position, many
ternal shape modes of the soliton can be excited[3,7].
If (∂2F/∂x2)x∗

0
is larger than some critical value, the

the first internal shape mode can become unstable
this instability can lead to the soliton destruction.
this phenomenon the soliton decays into an antisol
and two solitons. What is interesting in this situati
is thatF(x) can be a localized perturbation.

Suppose we are interested in the stability of a s
ton situated in equilibrium positions created by t
inhomogeneous forceF(x). Using an inverse-problem
method [3,8] we construct an exact solutionφk(x)

with the topological properties of a kink-soliton. The
we investigate the stability of the solution solving t
spectral problem

(3)L̂f (x) = Γf (x),

where L̂ = −∂xx − [∂G(φ)/∂φ]φ=φk
, Γ = −(λ2 +

γ λ).
Let us discuss some examples in detail.
The force

(4)F(x) = α tanh(βx)
[
δ + ε sech2(βx)

]
,

can sustain a kink-soliton equilibrated at pointx = 0.
When we solve the stability problem(3) we ob-

tain the following eigenvalues of the discrete sp
trum (for simplicity we assumeδ = (α2 − 1)/2, ε =
(4β2 − α2)/2 andG(φ) = (φ − φ3)/2: Γn = β2(Λ +
2Λn − n2) − 1

2, whereΛ(Λ + 1) = 3α2/2β2, n < Λ.
The translational mode of the soliton is stable

2β2Λ > 1. If this condition is not satisfied, this ju
means that the soliton center of mass will move aw
from the unstable equilibrium positionx = 0. This
does not necessarily lead to the soliton destruction

However, if the following condition holds:

(5)2β2(3Λ − 1) < 1,

the soliton first shape mode is unstable. In this ca
the soliton can be destroyed!

In the very special (but also very illustrative) ca
ε = 0, we have that for 4β2 > 1, the translational mod
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is stable. This means the equilibrium positionx = 0 is
stable for the soliton. The soliton center of mass
perform oscillations around pointx = 0. If 4β2 < 1
(but 10β2 > 1), the translational mode is unstab
In this case, the soliton can move away from po
x = 0, but it conserves its very characteristic shape
cause the internal modes are still stable. Howeve
10β2 < 1, then the first internal (shape) mode becom
unstable. In this situation the soliton can explode. If
apply a spatiotemporal perturbation that periodica
(in time) creates this instability in the place where
soliton is situated at that instant, then the result will
a highly nonstationary spatiotemporal state where
soliton is not allowed to recover its original shape. T
soliton is in a permanent explosion.

Another very important example of Eq.(1) is the
sine-Gordon equation (i.e.,G(φ) = −sinφ). Suppose
F(x) = 2(β2 − 1)sinh(βx)cosh−2(βx). This pertur-
bation creates an equilibrium position for the sin
Gordon soliton at pointx = 0. When we solve the
eigenvalue problem(3) for the sine-Gordon soliton in
the presence of this external force we get the follo
ing discrete spectrum:Γn = β2(Λ + 2Λn − n2) − 1,
whereΛ(Λ + 1) = 2/β2. The integer part ofΛ yields
the number of eigenvalues in the discrete spectr
For β2 > 1, the translational mode is stable and th
are no internal modes. If(1/3) < β2 < 1, then the
translational mode is unstable (but still there are
internal modes). When(1/6) < β2 < (1/3) there ap-
pears an internal shape mode, which is stable.
β2 < 2/[Λ∗(Λ∗ + 1)], whereΛ∗ = (5+ √

17)/2, the
first internal shape mode becomes unstable. This
turbation can destroy the sine-Gordon soliton.

We should say that a soliton, moving in a mediu
that is homogeneous everywhere except for a z
where the conditions for the instabilities hold, can u
dergo dramatic transient changes. But when the so
leaves the mentioned zone, it will return to its origin
steady state shape.

How can we produce a permanent soliton exp
sion? We can use time-dependent perturbations

(6)φtt + γφt − φxx − G(φ) = F1(x) + F2(x, t),

where F1(x) is a perturbation that creates a pote
tial well for the soliton (i.e.,F(x) possesses a ze
x∗

0 such that(∂F/∂x)x∗
0

> 0) andF2(x, t) is a space–
time perturbation that periodically generates the in
bilities conditions.Fig. 1 shows an example of thos
Fig. 1. Initial steps of a permanent soliton explosion sustai
by a spatiotemporal perturbation as in Eq.(6). Here F1(x) =
(1/2)A(A2 − 1) tanh(Bx), F2(x, t) = (1/2)f0A(4B2 − A2) ×
cos(ωt)sinh(Bx)cosh−3(Bx), A = 1.5, B = 0.2, γ = 0.1, ω = 1,
f0 = 3.

highly complex spatiotemporal behaviors. In all t
figuresG(φ) = (φ − φ3)/2. However, similar result
are obtained with the sine-Gordon and other gene
ized Klein–Gordon equations.

Can we produce permanent soliton explosio
without time-dependent external perturbations?

Here we would like to remark that solitons c
move with constant velocity (without attenuation)
active and excitable media, and in systems with n
linear damping even without explicit external forces

Let us discuss here briefly the importance of n
linear damping. Linear dissipative systems like
damped harmonic oscillatorφtt +γφt +ω2

0φ = 0 can-
not sustain oscillations. However, the nonlinear os
lator φtt − bφt + aφ3

t + ω2
0φ = 0 supports a stabl

limit cycle [9]. The transition from a stable focus
an unstable focus and a stable limit cycle is the
sult of a Hopf bifurcation. This system is very easy
realize in practice using negative-resistance electr
elements[10].

Soliton systems as the following

(7)φtt + R(φt ) − φxx − G(φ) = 0,

wheredR(φt )/dφt is negative for small values of|φt |
and positive elsewhere, can support solitons mov
with a constant velocity. An example of this kind
systems can be realized in practice using a Jos
son junction transmission line where the resisto
a negative-resistance twin-tunnel-diode circuit o
twin-transistor system[10]. In this case,R(φt ) =
−bφ + aφ3 is a good model.
t t
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Fig. 2. (a) Soliton explosion due to nonlinear damping. Here in Eq.(7): R(φt ) = −bφt +aφ3
t , a = 1,b = 0.7. (b) Limit cycle produced with the

dynamics of the soliton center of mass in Eq.(8). HereΓ (x) = 1− l/cosh(Dx), F(x) = A tanh(Bx), A = 0.45,B = 0.65, l = 2, D = 0.65.
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We have investigated the shape mode stability
the soliton in the presence of nonlinear damping as
did before using the spectral problem(3).

SupposeR(φt ) possesses two local extrema: a m
imum and a minimum such that the value of|R(φt )| at
these extrema isRm. If this value is comparable with
the absolute value of the extrema ofG(φ) (let us call
it Gm), then the soliton can be destroyed. In fact
Rm > Gm the internal shape mode of the soliton c
be unstable and the soliton becomes a highly non
tionary state.

WhenF(x) in Eq.(2) has a stable zero, sayx = x∗
0,

the center of mass of a soliton can perform damped
cillations aroundx∗

0. If we wish to sustain these osci
lations without explicit time-periodic external force
then we should resort again to negative damping.
other way to experiment negative damping is when
damping coefficient in Eq.(2) is a function ofx:

(8)φtt + Γ (x)φt − φxx − G(φ) = F(x).

Here Γ (x) is negative in a neighborhood ofx∗
0

and positive elsewhere. This can be done in a ch
of nonlinear oscillators using negative-resistance
cuits [10] only in some small interval of the chain
An example ofΓ (x) with the required features i
Γ (x) = γ [1− L/cosh2(Dx)], where(1− L) < 0.
Fig. 2(b) shows a limit cycle which is the result o
the dynamics of the soliton center of mass in Eq.(8).
However, if we are not careful, the soliton can explo
also in this system. We have solved the soliton stab
problem for this equation. The most important res
is that the first internal shape mode is unstable
L > 5/2. This behavior can be observed inFig. 3(a).

Can we control all these types of explosive dyna
ics? Well, if we can change the parameters of the s
tem, then we can use parameter values that do not
to soliton explosions. However, sometimes we can
change the parameters. We just are allowed to a
some external perturbation.

Let us pose the following problem:

(9)φtt + γφt − φxx − G(φ) = Fp(x, t) + Fc(x).

Eq. (9) represents a system with explosive beh
ior as that shown inFigs. 1, 2(a) and 3(a), when the
control perturbationFc(x) = 0. The problem is to find
a controlling perturbationFc(x). SupposeFp(x, t) is
a function that periodically generates the instabi
conditions discussed in the first part of the Letter.
example can be the followingFp(x, t) = a cos(ωt) ×
tanh(Bx). The strategy could be to find a perturbati
Fc(x) such that the superpositionFp(x, t) + Fc(x)

does not satisfy the instability condition anymore
any t .
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Fig. 3. (a) Highly nonstationary spatiotemporal dynamics produced by Eq.(8). Here the simulated equation is the same as inFig. 2(b) with l = 6.
(b) The soliton dynamics can be controlled in order to avoid the soliton explosion. Here in Eq.(9) γ = 0.1,Fp(x, t) = −0.385 tanh(Bx)cos(ωt),
Fc(x, t) = −0.75 tanh(Bx)cosh−2(Bx), B = 1, ω = 0.2.
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It is remarkable that this can be achieved
ing a localized perturbation. For instanceFp(x, t) =
−0.385 cos(ωt) tanh(Bx) is a turbulent-producing pe
turbation, andFc(x) = 0.75 sinh(Bx)cosh−3(Bx) can
control this behavior. This can be seen inFig. 3(b).

Similarly, the turbulence created by nonline
damping can be controlled with a stabilizing pert
bation:φtt − φxx − bφt + aφ3

t − G(φ) = Fc(x).
The explanation for these phenomena is based

our analytical results presented above. The per
bation Fp(x, t) = −0.385 cos(ωt) tanh(Bx) is able
to destroy the soliton and produce a highly no
stationary state because the perturbationF(x) =
−0.385 tanh(Bx) leads to the instability of the sol
ton shape mode (according to our condition(5)). So
Fp(x, t) will produce this condition regularly. Th
soliton will be exposed to this instability again a
again. The soliton destruction produces several
solitons and antisolitons which also can be later
stroyed because the perturbation makes them uns
too. The control perturbationFc(x) is able to stabilize
the soliton because the total perturbationF(x, t) =
−0.385 cos(ωt) tanh(Bx)+0.75 sinh(βx)cosh−3(βx)

does not satisfy the shape mode instability con
tion for any t . That is, when we solve the stab
ity problem (3) for F(x) = −0.385µ tanh(Bx) +
0.75 sinh(βx)cosh−3(βx), the internal shape mode
are always stable for−1� µ � 1.

The kink-solitons are examples of a very ge
eral phenomenon called topological defects. This
of phenomena includes: topological solitons, vortic
and spirals[11]. Although these objects can posse
different origin and nature in different physical sy
tems, they all possess very similar dynamical prop
ties[11].

The breakup of topological defects has been
served in experiments in many systems[12].

In different experiments, it has been observed t
one topological defect can breakup into several to
logical defects. In particular, the “elementary” break
that we have found, where one topological def
breaks up into three topological defects: one ant
fect and two defects, has been observed in car
tissue[13].

All the situations discussed in the present Le
that lead to very complex spatiotemporal behavi
start with soliton breakups (seeFigs. 1, 2(a), and 3).

At least, the following two different breakup sc
narios are documented in experiments[14–16]. In one
case, the breakup (leading to turbulence) occurs w
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0)
a spatiotemporal external forcing is added to the s
tem [14]. In a second case, the topological defe
break after a Hopf bifurcation[16].

We believe that the results of the present Le
show that very similar phenomena can occur w
kink-solitons in Klein–Gordon systems. We have be
able to produce defect-mediated turbulence using
tiotemporal external forcing, and after a Hopf bifurc
tion generated by nonlinear damping.
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