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Abstract

We investigate the dynamics of solitons in generalized Klein—Gordon equations in the presence of nonlinear damping and
spatiotemporal perturbations. We will present different mechanisms for soliton explosions. We show (both analytically and
numerically) that some space-dependent perturbations or nonlinear damping can make the soliton internal mode unstable leadinc
to soliton explosion. We will show that, in some cases, while some conditions are satisfied, the soliton explodes becoming a
permanent, extremely complex, spatiotemporal dynamics. We believe these mechanisms can explain some of the phenomen:
that recently have been reported to occur in excitable media. We present a method for controlling soliton explosions.
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Solitons are used in many important technological For instance, Milchev and coworkers have studied
applications. Among these applications we can men- the Frenkel-Kontorova model with anharmonic in-
tion long distance communication systems and soliton teratomic interaction$2]. They have found that, in
oscillators in superconducting devidds. the Frenkel-Kontorova model with nonconvex inter-

However, under certain conditions, solitons can actions between closest neighbors, a breakup of the
become unstabl2—-4]. Such instabilities have been kink takes place when the effective amplitude of the
called both soliton breakup and soliton explosions. sinusoidal substrate potential exceeds a certain critical

value.
T Comesbonding authors An extensive discussion of soliton dynamics in the
E_ma”zddresgseqmge@pion.iviC_VqJ_A_ Gonzélea), framework of the Frenkel-Kontorova model can be

Iguerre@usb.vé_.E. Guerrero). found in the recent boo}b].
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On the other hand, in Refi3] it was predicted that
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When the soliton is in an unstable equilibrium po-

the soliton internal mode can become unstable leading sition, it is “stretched” by the pair of forces that are

to soliton explosions.

Such instabilities as soliton explosions can affect
all the mentioned applications. So it is very important
to understand all the possible mechanisms of soliton
explosions in order to avoid them.

In the present Letter we investigate generalized
Klein—Gordon equations as the following

G1r + R(pr) — dux — G(P) = F(x, 1), @

whereG(¢) = —dU (¢)/3¢, U(¢) is a potential func-
tion with at least two minimapi, ¢3 and a maxi-
mum ¢, such thatU(¢1) = U(¢3) = 0, R(¢;) are
dissipative terms, anél'(x, t) represents external per-
turbations. We are interested in kinks, that is, topologi-
cal solitons between the poingg and¢s. The famous
sine-Gordon andp*-systems are particular cases of
Eq.(2).

The topological solitons studied in the present Let-

ter possess important applications in condensed mat-

ter physics—they describe domain walls in ferromag-
nets and ferroelectric materials, dislocations in crys-

acting on its body in opposite directions. And there is
a limit for the magnitude of the pair of forces that the
soliton can resist. Nevertheless, there is a more sub-
tle mechanism for soliton destruction. When a soliton
is close to an unstable equilibrium position, many in-
ternal shape modes of the soliton can be exdized|.

If (32F/dx?),; is larger than some critical value, then
the first internal shape mode can become unstable and
this instability can lead to the soliton destruction. In
this phenomenon the soliton decays into an antisoliton
and two solitons. What is interesting in this situation
is that F (x) can be a localized perturbation.

Suppose we are interested in the stability of a soli-
ton situated in equilibrium positions created by the
inhomogeneous forcE(x). Using an inverse-problem
method[3,8] we construct an exact solutiogy (x)
with the topological properties of a kink-soliton. Then
we investigate the stability of the solution solving the
spectral problem

~

Lf(x)=TIf(x), 3

tals, charge-density waves, interphase boundaries innere j — ey — [0G($)/3lg—gy, I' = —(\2 +
= o I =

metal alloys, fluxons in long Josephson junctions and
Josephson transmission lines, ¢&3.

We will present different mechanisms for soliton
explosions. We will show that in some cases, while
some conditions hold, the soliton explosion is perma-
nent.

A soliton destruction is observed when inhomoge-
neous space-dependent perturbations are present

11 +vdr — Pxx — G(@) = F(x). )

We should say that the zeroes Bfx) are candi-
dates for equilibrium positions for the solit¢8]. If
F(x) possesses only one zex® (F(xj) = 0), then it
is a stable position for the soliton {ﬁF/ax)xg > 0.
Otherwise, the position is an unstable equilibrium.
The opposite is true for the antisoliton. The center
of mass of a soliton can make oscillations around a
stable zero ofF (x), and it can move away from an
unstable one. However, wheFi(x) has an unstable
zero atx = x; and additionally, the following condi-
tions holds lim _ 400 F(x) = FFx, Foo > 0 andFy

YA).
Let us discuss some examples in detail.
The force

4

can sustain a kink-soliton equilibrated at point 0.
When we solve the stability problelf8) we ob-
tain the following eigenvalues of the discrete spec-

trum (for simplicity we assumé = (a® — 1)/2, ¢ =
(4% —a?)/2 andG(¢) = (¢ — ¢*)/2: I, = p(A +
2An —n?) — 1 whereA(A + 1) =3a2/282,n < A.

The translational mode of the soliton is stable if
282A > 1. If this condition is not satisfied, this just
means that the soliton center of mass will move away
from the unstable equilibrium positiom = 0. This
does not necessarily lead to the soliton destruction.

However, if the following condition holds:

F(x) = atanh(Bx)[8 + & secR(Bx)],

28°(BA—-1) <1, (5)

the soliton first shape mode is unstable. In this case,

is larger than some critical value, then the soliton can the soliton can be destroyed!

be destroyed and an antisoliton is “created” in the
equilibrium positiony = x;.

In the very special (but also very illustrative) case
¢ = 0, we have that for 42 > 1, the translational mode
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is stable. This means the equilibrium positioge- 0 is
stable for the soliton. The soliton center of mass can
perform oscillations around point = 0. If 482 < 1
(but 182 > 1), the translational mode is unstable.
In this case, the soliton can move away from point
x =0, but it conserves its very characteristic shape be-
cause the internal modes are still stable. However, if
1082 < 1, then the first internal (shape) mode becomes
unstable. In this situation the soliton can explode. If we
apply a spatiotemporal perturbation that periodically
(in time) creates this instability in the place where the
soliton is situated at that instant, then the result will be
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Fig. 1. Initial steps of a permanent soliton explosion sustained

a highly nonstationary spatiotemporal state where the by a spatiotemporal perturbation as in E§). Here Fy(x) =

soliton is not allowed to recover its original shape. The
soliton is in a permanent explosion.

Another very important example of E@L) is the
sine-Gordon equation (i.eG (¢) = — sing). Suppose
F(x) = 2(% — 1) sinh(Bx) cosh™?(Bx). This pertur-
bation creates an equilibrium position for the sine-
Gordon soliton at pointt =0. When we solve the
eigenvalue problen) for the sine-Gordon soliton in
the presence of this external force we get the follow-
ing discrete spectruni, = 2(A + 24An — n?) — 1,
whereA(A + 1) = 2/82. The integer part ofA yields
the number of eigenvalues in the discrete spectrum.
For B2 > 1, the translational mode is stable and there
are no internal modes. If1/3) < g2 < 1, then the
translational mode is unstable (but still there are no
internal modes). Whenl/6) < g2 < (1/3) there ap-

(1/2)A(A% — DtanhBx), Fa(x,t) = (1/2) foA(4B2 — A%) x
cogwt) sinh(Bx) costr3(Bx), A=15, B=02, y =01, w =1,
fo=3.

highly complex spatiotemporal behaviors. In all the
figuresG(¢) = (¢ — ¢$3)/2. However, similar results
are obtained with the sine-Gordon and other general-
ized Klein—Gordon equations.

Can we produce permanent soliton explosions
without time-dependent external perturbations?

Here we would like to remark that solitons can
move with constant velocity (without attenuation) in
active and excitable media, and in systems with non-
linear damping even without explicit external forces.

Let us discuss here briefly the importance of non-
linear damping. Linear dissipative systems like the

pears an internal shape mode, which is stable. For damped harmonic oscillatgs; +y ¢, + w§¢ = 0 can-

B2 < 2/[A(Ay + 1], whereA, = (54 /17)/2, the

first internal shape mode becomes unstable. This per-

turbation can destroy the sine-Gordon soliton.
We should say that a soliton, moving in a medium

not sustain oscillations. However, the nonlinear oscil-
lator ¢, — bey + ap? + wi¢ = 0 supports a stable
limit cycle [9]. The transition from a stable focus to
an unstable focus and a stable limit cycle is the re-

that is homogeneous everywhere except for a zone Sult of a Hopf bifurcation. This system is very easy to

where the conditions for the instabilities hold, can un-

realize in practice using negative-resistance electronic

dergo dramatic transient changes. But when the soliton €lementg10].

leaves the mentioned zone, it will return to its original
steady state shape.

How can we produce a permanent soliton explo-
sion? We can use time-dependent perturbations

Gt +vd — dxx — G(P) = F1(x) + Fa(x, 1), (6)

where Fi(x) is a perturbation that creates a poten-
tial well for the soliton (i.e.,F(x) possesses a zero
xg such that(aF/ax)xg > 0) andF2(x, 1) is a space—
time perturbation that periodically generates the insta-
bilities conditions.Fig. 1 shows an example of those

Soliton systems as the following

OGrr + R(@r) — xx — G(@p) = 0, (7)

whered R (¢;)/d¢; is negative for small values o |

and positive elsewhere, can support solitons moving
with a constant velocity. An example of this kind of
systems can be realized in practice using a Joseph-
son junction transmission line where the resistor is
a negative-resistance twin-tunnel-diode circuit or a
twin-transistor systen10]. In this case,R(¢;) =
—be, +a¢? is a good model.
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Fig. 2. (a) Soliton explosion due to nonlinear damping. Here ilBq.R (¢;) = —b¢: +a¢l3, a=1,b=0.7. (b) Limit cycle produced with the
dynamics of the soliton center of mass in E8). HereI"(x) =1 — [/ coshDx), F(x) = Atanh(Bx), A=0.45,B =0.65,/ =2, D = 0.65.

We have investigated the shape mode stability of  Fig. 2(b) shows a limit cycle which is the result of
the soliton in the presence of nonlinear damping as we the dynamics of the soliton center of mass in ).

did before using the spectral probl€B). However, if we are not careful, the soliton can explode

Supposer (¢;) possesses two local extrema: a max- also in this system. We have solved the soliton stability
imum and a minimum such that the value| 8¢, )| at problem for this equation. The most important result
these extrema i®,,. If this value is comparable with  is that the first internal shape mode is unstable for
the absolute value of the extrema@fe) (let us call L > 5/2. This behavior can be observedrig. 3a).

it G,,), then the soliton can be destroyed. In fact, if Can we control all these types of explosive dynam-
R > G, the internal shape mode of the soliton can ics? Well, if we can change the parameters of the sys-
be unstable and the soliton becomes a highly nonsta-tem, then we can use parameter values that do not lead

tionary state. to soliton explosions. However, sometimes we cannot
WhenF (x) in Eq.(2) has a stable zero, say= x;, change the parameters. We just are allowed to apply

the center of mass of a soliton can perform damped o0s- some external perturbation.

cillations aroundx. If we wish to sustain these oscil- Let us pose the following problem:

lations without explicit time-periodic external forces,
then we should resort again to negative damping. An- ¢t + ¥ ¢; — ¢xx — G(¢) = Fp(x, 1) + F.(x). )
other way to experiment negative damping is when the

damping coefficient in Eq2) is a function ofx: Eqg. (9) represents a system with explosive behav-

ior as that shown irFigs. 1, 2(a) and 3(awhen the
control perturbatiorf,. (x) = 0. The problem is to find

G + (X)) — Py — G(P) = F(x). (8) a controlling perturbatiorF, (x). SupposeF), (x, t) is
a function that periodically generates the instability
Here I'(x) is negative in a neighborhood aof; conditions discussed in the first part of the Letter. An

and positive elsewhere. This can be done in a chain example can be the following, (x, r) = a cogwt) x

of nonlinear oscillators using negative-resistance cir- tanh(Bx). The strategy could be to find a perturbation
cuits [10] only in some small interval of the chain.  F.(x) such that the superpositiofi,(x,t) + F.(x)
An example of I'(x) with the required features is does not satisfy the instability condition anymore for
I'(x) = y[1— L/cosi(Dx)], where(1— L) <O0. any?.
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Fig. 3. (a) Highly nonstationary spatiotemporal dynamics produced b¢BEdHere the simulated equation is the same &dn2(b) with/ = 6.
(b) The soliton dynamics can be controlled in order to avoid the soliton explosion. Here®) kzg= 0.1, F), (x, t) = —0.385tanliBx) coswt),

F.(x,t) = —0.75tani(Bx) cosh 2(Bx), B =1, » = 0.2.

It is remarkable that this can be achieved us-
ing a localized perturbation. For instanég(x, ) =
—0.385 coswt) tanh(Bx) is a turbulent-producing per-
turbation, andr, (x) = 0.75 sink(Bx) cosh 3(Bx) can
control this behavior. This can be seerfig. 3b).

Similarly, the turbulence created by nonlinear
damping can be controlled with a stabilizing pertur-
bation:¢;; — ¢rx — by + ag? — G(¢) = Fe(x).

ity problem (3) for F(x) = —0.385utanh(Bx) +
0.75sinhBx) cosh 3(Bx), the internal shape modes
are always stable for1 < u < 1.

The kink-solitons are examples of a very gen-
eral phenomenon called topological defects. This set
of phenomena includes: topological solitons, vortices
and spiralg11]. Although these objects can possess
different origin and nature in different physical sys-

The explanation for these phenomena is based ontems, they all possess very similar dynamical proper-
our analytical results presented above. The pertur- ties[11].

bation F,(x,t) = —0.385cos%wt) tanh(Bx) is able

to destroy the soliton and produce a highly non-
stationary state because the perturbatiBx) =
—0.385tanliBx) leads to the instability of the soli-
ton shape mode (according to our conditi@)). So
F,(x,t) will produce this condition regularly. The
soliton will be exposed to this instability again and

The breakup of topological defects has been ob-
served in experiments in many systefh2].

In different experiments, it has been observed that
one topological defect can breakup into several topo-
logical defects. In particular, the “elementary” breakup
that we have found, where one topological defect
breaks up into three topological defects: one antide-

again. The soliton destruction produces several new fect and two defects, has been observed in cardiac

solitons and antisolitons which also can be later de-

tissue[13].

stroyed because the perturbation makes them unstable All the situations discussed in the present Letter

too. The control perturbatiof; (x) is able to stabilize
the soliton because the total perturbatifix, ) =
—0.385 cogwr) tanh(Bx) +0.75 sinkBx) cosh™3(Bx)

that lead to very complex spatiotemporal behaviors
start with soliton breakups (s€égs. 1, 2(a), and)3
At least, the following two different breakup sce-

does not satisfy the shape mode instability condi- narios are documented in experimejit$—16] In one

tion for any ¢. That is, when we solve the stabil-

case, the breakup (leading to turbulence) occurs when
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a spatiotemporal external forcing is added to the sys-
tem [14]. In a second case, the topological defects
break after a Hopf bifurcatiof16].

We believe that the results of the present Letter
show that very similar phenomena can occur with
kink-solitons in Klein—-Gordon systems. We have been
able to produce defect-mediated turbulence using spa-
tiotemporal external forcing, and after a Hopf bifurca-
tion generated by nonlinear damping.
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